768
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Environmental chemicals and adverse pregnancy outcomes: Placenta as a target and possible driver of pre- and postnatal effects

, &
Pages 964-985 | Published online: 02 Aug 2022

References

  • Addo, K. A., Palakodety, N., Hartwell, H. J., Tingare, A., & Fry, R. C. (2020). Placenta microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicology Reports, 7, 1046–1056. https://doi.org/10.1016/j.toxrep.2020.08.002
  • Alvarez-Silvares, E., Fernández-Cruz, T., Domínguez-Vigo, P., Rubio-Cid, P., Seoane-Pillado, T., & Martínez-Carballo, E. (2021). Association between placenta concentrations polybrominated and polychlorinated biphenyls and gestational diabetes mellitus: A case-control study in northwestern Spain. Environmental Science and Pollution Research International, 28(8), 10292–10301. https://doi.org/10.1007/s11356-021-12377-z
  • Anand, M., Singh, L., Agarwal, P., Saroj, R., & Taneja, A. (2019). Pesticides exposure through environment and risk of pre-term birth: A study from Agra city. Drug and Chemical Toxicology, 42(5), 471–477. https://doi.org/10.1080/01480545.2017.1413107
  • Anand, M., & Taneja, A. (2020). Organochlorine pesticides residue in placenta and their influence on anthropometric measures of infants. Environmental Research, 182, 109106. https://doi.org/10.1016/j.envres.2019.109106
  • Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 491. https://doi.org/10.3389/fimmu.2014.00491
  • Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21(2), 243–251. https://doi.org/10.1097/mop.0b013e32832925cc
  • Basak, S., Srinivas, V., & Duttaroy, A. K. (2018). Bisphenol-A impairs cellular function and alters DNA methylation of stress pathway genes in first trimester trophoblast cells. Reproductive Toxicology (Elmsford, N.Y.), 82, 72–79. https://doi.org/10.1016/j.reprotox.2018.10.009
  • Behlen, J. C., Lau, C. H., Li, Y., Dhagat, P., Stanley, J. A., Rodrigues Hoffman, A., Golding, M. C., Zhang, R., & Johnson, N. M. (2021). Gestational exposure to ultrafine particles reveals sex-and dose-specific changes in offspring birth outcomes, placental morphology, and gene networks. Toxicological Sciences: An Official Journal of the Society of Toxicology, 184(2), 204–213. https://doi.org/10.1093/toxsci/kfab118
  • Blake, B. E., & Fenton, S. E. (2020). Early life exposure to per-and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri-and postnatal effects. Toxicology, 443, 152565. https://doi.org/10.1016/j.tox.2020.152565
  • Borghese, M. M., Walker, M., Helewa, M. E., Fraser, W. D., & Arbuckle, T. E. (2020). Association of perfluoroalkyl substances with gestational hypertension and preeclampsia in the MIREC study. Environment International, 141, 105789. https://doi.org/10.1016/j.envint.2020.105789
  • Borish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. The Journal of Allergy and Clinical Immunology, 111(2 Suppl), S460–S475. https://doi.org/10.1067/mai.2003.108
  • Buckley, J. P., Doherty, B. T., Keil, A. P., & Engel, S. M. (2017). Statistical approaches for estimating sex-specific effects in endocrine disruptors research. Environmental Health Perspectives, 125(6), 067013. https://doi.org/10.1289/EHP334
  • Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best Practice & Research. Clinical Obstetrics & Gynaecology, 25(3), 287–299. https://doi.org/10.1016/j.bpobgyn.2010.10.016
  • Camara, L. R., Arbuckle, T. E., Trottier, H., & Fraser, W. D. (2019). Associations between maternal exposure to bisphenol A or triclosan and gestational hypertension and preeclampsia: The MIREC Study. American Journal of Perinatology, 36(11), 1127–1135. https://doi.org/10.1055/s-0038-1676489
  • Chêne, A., Briand, V., Ibitokou, S., Dechavanne, S., Massougbodji, A., Deloron, P., Luty, A. J. F., Gamain, B., & Fievet, N. (2014). Placental cytokine and chemokine profiles reflect pregnancy outcomes in women exposed to Plasmodium falciparum infection. Infection and Immunity, 82(9), 3783–3789. https://doi.org/10.1128/IAI.01922-14
  • Chiapella, G., Flores-Martín, J., Ridano, M. E., Reyna, L., De Potas, G. M., Panzetta-Dutari, G. M., & Genti-Raimondi, S. (2013). The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta, 34(9), 792–798. https://doi.org/10.1016/j.placenta.2013.06.007
  • Chiu, K. C., Sisca, F., Ying, J. H., Tsai, W. J., Hsieh, W. S., Chen, P. C., & Liu, C. Y. (2021). Prenatal chlorpyrifos exposure in association with PPARγ H3K4me3 and DNA methylation levels and child development. Environmental Pollution (Barking, Essex : 1987), 274, 116511. https://doi.org/10.1016/j.envpol.2021.116511
  • de Aguiar Greca, S. C., Kyrou, I., Pink, R., Randeva, H., Grammatopoulos, D., Silva, E., & Karteris, E. (2020). Involvement of the endocrine-disrupting chemical bisphenol A (BPA) in human placentation. Journal of Clinical Medicine, 9(2), 405. https://doi.org/10.3390/jcm9020405
  • De Felice, B., Manfellotto, F., Palumbo, A., Troisi, J., Zullo, F., Di Carlo, C., Sardo, A. D. S., De Stefano, N., Ferbo, U., Guida, M., & Guida, M. (2015). Genome − wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Medical Genomics, 8, 56. https://doi.org/10.1186/s12920-015-0131-z
  • Deroo, B. J., & Korach, K. S. (2006). Estrogen receptors and human disease. The Journal of Clinical Investigation, 116(3), 561–570. https://www.jci.org/articles/view/27987 https://doi.org/10.1172/JCI27987
  • Desvergne, B., & Wahli, W. (1999). Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocrine Reviews, 20(5), 649–688. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.9461&rep=rep1&type=pdf (accessed February 8, 2022).
  • Di Renzo, G. C., Picchiassi, E., Coata, G, Clerici, G., & Brillo, E. (2015). Is there a sex of the placenta? Journal of Pediatric and Neonatal Individualized Medicine, 4(2), e040246. https://doi.org/10.7363/040246
  • Dix, D. J., Houck, K. A., Martin, M. T., Richard, A. M., Setzer, R. W., & Kavlock, R. J. (2007). The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences: An Official Journal of the Society of Toxicology, 95(1), 5–12. https://doi.org/10.1093/toxsci/kfl103
  • Drukteinis, J., Medrano, T., Ablordeppey, E. A., Kitzman, J. M., & Shiverick, K. T. (2005). Benzo [a] pyrene, but not 2,3,7,8-TCDD, induces G2/M cell cycle arrest, p21CIP1 and p53 phosphorylation in human choriocarcinoma JEG-3 cells: A distinct signaling pathway. Placenta, 26, S87–S95. https://doi.org/10.1016/j.placenta.2005.01.013
  • Du, B., Zhang, Y., Lam, J. C., Pan, S., Huang, Y., Chen, B., Lan, S., Li, J., Luo, D., & Zeng, L. (2019). Prevalence, biotransformation, and maternal transfer of synthetic phenolic antioxidants in pregnant women from South China. Environmental Science & Technology, 53(23), 13959–13969. https://doi.org/10.1021/acs.est.9b04709
  • Du, Y., Cai, Z., Zhang, H., Liang, W., Wang, H., Man, Q., & Wang, W. (2021). Nitric oxide mediates disruption of human placental trophoblast invasion induced by perfluorobutane sulfonate. Environmental Pollution (Barking, Essex: 1987), 283, 117137. https://doi.org/10.1016/j.envpol.2021.117137
  • Dy, J., Guan, H., Sampath-Kumar, R., Richardson, B. S., & Yang, K. (2008). Placental 11β-hydroxysteroid dehydrogenase type 2 is reduced in pregnancies complicated with idiopathic intrauterine growth restriction: Evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery. Placenta, 29(2), 193–200. https://doi.org/10.1016/j.placenta.2007.10.010
  • Elkin, E. R., Harris, S. M., Su, A. L., Lash, L. H., & Loch-Caruso, R. (2020). Placenta as a target of trichloroethylene toxicity. Environmental Science. Processes & Impacts, 22(3), 472–486. https://doi.org/10.1039/C9EM00537D
  • Fernandez, M. F., Olmos, B., Granada, A., López-Espinosa, M. J., Molina-Molina, J.-M., Fernandez, J. M., Cruz, M., Olea-Serrano, F., & Olea, N. (2007). Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: A nested case-control study. Environmental Health Perspectives, 115(Suppl 1), 8–14. https://doi.org/10.1289/ehp.9351
  • Fisher, S. J. (2004). The placental problem: Linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reproductive Biology and Endocrinology: RB&E, 2(1), 53–54. https://doi.org/10.1186/1477-7827-2-53
  • Fournier, T., Tsatsaris, V., Handschuh, K., & Evain-Brion, D. (2007). PPARs and the placenta. Placenta, 28(2-3), 65–76. https://doi.org/10.1016/j.placenta.2006.04.009
  • Freire, C., Vela-Soria, F., Beneito, A., Lopez-Espinosa, M.-J., Ibarluzea, J., Barreto, F. B., Casas, M., Vrijheid, M., Fernandez-Tardon, G., Riaño-Galan, I., & Fernandez, M. F. (2020). Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. International Journal of Hygiene and Environmental Health, 230, 113597. https://doi.org/10.1016/j.ijheh.2020.113597
  • Fu, G., Brkić, J., Hayder, H., & Peng, C. (2013). MicroRNAs in human placental development and pregnancy complications. International Journal of Molecular Sciences, 14(3), 5519–5544. https://doi.org/10.3390/ijms14035519
  • Gao, F., Hu, W., Li, Y., Shen, H., & Hu, J. (2017). Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARγ pathway. Toxicology and Applied Pharmacology, 327, 23–29. https://doi.org/10.1016/j.taap.2017.04.014
  • Ghosh, K., Chatterjee, B., Nalla, K. K., Behera, B., Mukherjee, A., & Kanade, S. R. (2022). Di-(2-ethylhexyl) phthalate triggers DNA methyltransferase 1 expression resulting in elevated CpG-methylation and enrichment of MECP2 in the p21 promoter in vitro. Chemosphere, 293, 133569. https://doi.org/10.1016/j.chemosphere.2022.133569
  • Gu, Y., Sun, J., Groome, L. J., & Wang, Y. (2013). Differential miRNA expression profiles between the first and third trimester human placentas. American Journal of Physiology. Endocrinology and Metabolism, 304(8), E836–E843. https://doi.org/10.1152/ajpendo.00660.2012
  • Gude, N. M., Roberts, C. T., Kalionis, B., & King, R. G. (2004). Growth and function of the normal human placenta. Thrombosis Research, 114(5-6), 397–407. https://doi.org/10.1016/j.thromres.2004.06.038
  • Guttmacher, A. E., Maddox, Y. T., & Spong, C. Y. (2014). The human placenta project: Placental structure, development, and function in real time. Placenta, 35(5), 303–304. https://doi.org/10.1016/j.placenta.2014.02.012
  • Hauguel-de Mouzon, S., & Guerre-Millo, M. (2006). The placenta cytokine network and inflammatory signals. Placenta, 27(8), 794–798. https://doi.org/10.1016/j.placenta.2005.08.009
  • Hiromori, Y., Yui, H., Nishikawa, J. I., Nagase, H., & Nakanishi, T. (2016). Organotin compounds cause structure-dependent induction of progesterone in human choriocarcinoma JAR cells. The Journal of Steroid Biochemistry and Molecular Biology, 155(Pt B), 190–198. https://doi.org/10.1016/j.jsbmb.2014.10.010
  • Hou, L., Zhang, X., Wang, D., & Baccarelli, A. (2012). Environmental chemical exposures and human epigenetics. International Journal of Epidemiology, 41(1), 79–105. https://doi.org/10.1093/ije/dyr154
  • Hu, W., Gao, F., Zhang, H., Hiromori, Y., Arakawa, S., Nagase, H., Nakanishi, T., & Hu, J. (2017). Activation of peroxisome proliferator-activated receptor gamma and disruption of progesterone synthesis of 2-ethylhexyl diphenyl phosphate in human placental choriocarcinoma cells: Comparison with triphenyl phosphate. Environmental Science & Technology, 51(7), 4061–4068. https://doi.org/10.1021/acs.est.7b00872
  • Ilekis, J. V., Tsilou, E., Fisher, S., Abrahams, V. M., Soares, M. J., Cross, J. C., Zamudio, S., Illsley, N. P., Myatt, L., Colvis, C., Costantine, M. M., Haas, D. M., Sadovsky, Y., Weiner, C., Rytting, E., & Bidwell, G. (2016). Placental origins of adverse pregnancy outcomes: Potential molecular targets: An executive workshop summary of the eunice kennedy shriver national institute of child health and human development. American Journal of Obstetrics and Gynecology, 215(1 Suppl), S1–S46. https://doi.org/10.1016/j.ajog.2016.03.001
  • Ishimura, R., Ohsako, S., Kawakami, T., Sakaue, M., Aoki, Y., & Tohyama, C. (2002). Altered protein profile and possible hypoxia in the placenta of 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed rats. Toxicology and Applied Pharmacology, 185(3), 197–206. https://doi.org/10.1006/taap.2002.9539
  • Janošek, J., Hilscherová, K., Bláha, L., & Holoubek, I. (2006). Environmental xenobiotics and nuclear receptors-interactions, effects and in vitro assessment. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 20(1), 18–37. https://doi.org/10.1016/j.tiv.2005.06.001
  • Julan, L., Guan, H., van Beek, J. P., & Yang, K. (2005). Peroxisome proliferator-activated receptor δ suppresses 11β-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology, 146(3), 1482–1490. https://doi.org/10.1210/en.2004-1357[PMC][15591138
  • Kim, M. J., Kim, C. H., An, M. J., Lee, J. H., Shin, G. S., Hwang, J. Y., Park, J., Song, M., Woo, H., Kim, Y., Rhee, S., & Kim, J. W. (2020a). Propylparaben induces apoptotic cell death in human placental BeWo cells via cell cycle arrest and enhanced caspase-3 activity. Molecular & Cellular Toxicology, 16(1), 83–92. https://doi.org/10.1007/s13273-019-00062-9
  • Kim, M. J., Kim, C. H., An, M. J., Lee, J. H., Shin, G. S., Song, M., & Kim, J. W. (2020b). Ethylparaben induces apoptotic cell death in human placenta BeWo cells via the Caspase-3 pathway. Animal Cells and Systems, 24(1), 34–43. https://doi.org/10.1080/19768354.2020.1711804
  • Kim, S., Cho, Y. H., Lee, I., Kim, W., Won, S., Ku, J. L., Moon, H. B., Park, J., Kim, S., Choi, G., & Choi, K. (2018). Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: A CHECK cohort study. Environment International, 119, 398–406. https://doi.org/10.1016/j.envint.2018.06.039
  • Kim, S., Cho, Y. H., Won, S., Ku, J. L., Moon, H. B., Park, J., Choi, G., Kim, S., & Choi, K. (2019). Maternal exposures to persistent organic pollutants are associated with DNA methylation of thyroid hormone − related genes in placenta differently by infant sex. Environment International, 130, 104956. https://doi.org/10.1016/j.envint.2019.104956
  • Kummu, M., Sieppi, E., Koponen, J., Laatio, L., Vähäkangas, K., Kiviranta, H., Rautio, A., & Myllynen, P. (2015). Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta, 36(10), 1185–1191. https://doi.org/10.1016/j.placenta.2015.07.119
  • Lacroix, M., Kina, E., & Hivert, M. F. (2013). Maternal/fetal determinants of insulin resistance in women during pregnancy and in offspring over life. Current Diabetes Reports, 13(2), 238–244.
  • Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews. Genetics, 11(3), 204–220. https://doi.org/10.1038/nrg2719
  • Li, J., Lam, J. C., Li, W., Du, B., Chen, H., & Zeng, L. (2019). Occurrence and distribution of photoinitiator additives in paired maternal and cord plasma in a South China population. Environmental Science & Technology, 53(18), 10969–10977. https://doi.org/10.1021/acs.est.9b03127
  • Li, Q., Kappil, M. A., Li, A., Dassanayake, P. S., Darrah, T. H., Friedman, A. E., Friedman, M., Lambertini, L., Landrigan, P., Stodgell, C. J., Xia, Y., Nanes, J. A., Aagaard, K. M., Schadt, E. E., Murray, J. C., Clark, E. B., Dole, N., Culhane, J., Swanson, J., … Chen, J. (2015). Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children's Study (NCS). Epigenetics, 10(9), 793–802. https://doi.org/10.1080/15592294.2015.1066960
  • Li, X., Wang, Y., Wei, P., Shi, D., Wen, S., Wu, F., Liu, L., Ye, N., & Zhou, H. (2018). Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells. Molecular and Cellular Endocrinology, 470, 38–47. https://doi.org/10.1016/j.mce.2017.07.016
  • Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12(11), 847–865. https://doi.org/10.1038/nrd4140
  • Marinello, W. P., Mohseni, Z. S., Cunningham, S. J., Crute, C., Huang, R., Zhang, J. J., & Feng, L. (2020). Perfluorobutane sulfonate exposure disrupted human placental cytotrophoblast cell proliferation and invasion involving in dysregulating preeclampsia related genes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(11), 14182–14199. https://doi.org/10.1096/fj.202000716RR
  • Matsuda, S., Kobayashi, M., & Kitagishi, Y. (2013). Expression and function of PPARs in placenta. PPAR Research, 2013, 256508. https://doi.org/10.1155/2013/256508
  • Melnick, R. L. (2001). Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of di(2-ethylhexyl) phthalate (DEHP)? Environmental Health Perspectives, 109(5), 437–442. https://doi.org/10.1289/ehp.01109437
  • Merlino, A. A., Welsh, T. N., Tan, H., Yi, L. J., Cannon, V., Mercer, B. M., & Mesiano, S. (2007). Nuclear progesterone receptors in the human pregnancy myometrium: Evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. The Journal of Clinical Endocrinology & Metabolism, 92(5), 1927–1933. https://doi.org/10.1210/jc.2007-0077
  • Meruvu, S., Zhang, J., & Choudhury, M. (2016). Mono-(2-ethylhexyl) phthalate increases oxidative stress responsive miRNAs in first trimester placental cell line HTR8/SVneo. Chemical Research in Toxicology, 29(3), 430–435. https://doi.org/10.1021/acs.chemrestox.6b00038
  • Minatoya, M., Hanaoka, T., & Kishi, R. (2020). Environmental exposures and adverse pregnancy-related outcomes. In Kishi R., Grandjean P. (Eds.) Health impacts of developmental exposure to environmental chemicals. Current topics in environmental health and preventive medicine. Springer. https://doi.org/10.1007/978-981-15-0520-1_2
  • Myatt, L., & Cui, X. (2004). Oxidative stress in the placenta. Histochemistry and Cell Biology, 122(4), 369–382. https://doi.org/10.1007/s00418-004-0677-x.pdf (accessed February 8, 2022).
  • Myllynen, P., Pasanen, M., & Vähäkangas, K. (2007). The fate and effects of xenobiotics in human placenta. Expert Opinion on Drug Metabolism & Toxicology, 3(3), 331–346. https://doi.org/10.1517/17425255.3.3.331
  • Nahar, M. S., Liao, C., Kannan, K., Harris, C., & Dolinoy, D. C. (2015). In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere, 124, 54–60. https://doi.org/10.1016/j.chemosphere.2014.10.071
  • Nakanishi, T., Hiromori, Y., Yokoyama, H., Koyanagi, M., Itoh, N., Nishikawa, J. I., & Tanaka, K. (2006). Organotin compounds enhance 17β-hydroxysteroid dehydrogenase type I activity in human choriocarcinoma JAR cells: Potential promotion of 17β-estradiol biosynthesis in human placenta. Biochemical Pharmacology, 71(9), 1349–1357. https://doi.org/10.1016/j.bcp.2006.01.014
  • Nakanishi, T., Nishikawa, J. I., Hiromori, Y., Yokoyama, H., Koyanagi, M., Takasuga, S., Ishizaki, J., Watanabe, M., Isa, S., Utoguchi, N., Itoh, N., Kohno, Y., Nishihara, T., & Tanaka, K. (2005). Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Molecular Endocrinology, 19(10), 2502–2516. https://doi.org/10.1210/me.2004-0397
  • Nebert, D. W., Roe, A. L., Dieter, M. Z., Solis, W. A., Yang, Y. I., & Dalton, T. P. (2000). Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochemical Pharmacology, 59(1), 65–85. https://doi.org/10.1016/S0006-2952(99)00310-X
  • Norwitz, E. R. (2006). Defective implantation and placentation: Laying the blueprint for pregnancy complications. Reproductive Biomedicine Online, 13(4), 591–599. https://doi.org/10.1016/S1472-6483(10)60649-9
  • Ortiga-Carvalho, T. M., Sidhaye, A. R., & Wondisford, F. E. (2014). Thyroid hormone receptors and resistance to thyroid hormone disorders. Nature Reviews. Endocrinology, 10(10), 582–591. https://doi.org/10.1038/nrendo.2014.143
  • Ouidir, M., Mendola, P., Louis, G. M. B., Kannan, K., Zhang, C., & Tekola-Ayele, F. (2020). Concentrations of persistent organic pollutants in maternal plasma and epigenome-wide placental DNA methylation. Clinical Epigenetics, 12(1), 1–17. https://doi.org/10.1186/s13148-020-00894-6
  • Palatnik, A., Xin, H., & Su, E. J. (2016). Dichotomous effects of aryl hydrocarbon receptor (AHR) activation on human fetoplacental endothelial cell function. Placenta, 44, 61–68. https://doi.org/10.1016/j.placenta.2016.06.004
  • Park, H. R., Kamau, P. W., & Loch-Caruso, R. (2014a). Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicology and Applied Pharmacology, 274(2), 283–292. https://doi.org/10.1016/j.taap.2013.11.015
  • Park, H. R., & Loch-Caruso, R. (2014b). Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line. Toxicology and Applied Pharmacology, 281(1), 67–77. https://doi.org/10.1016/j.taap.2014.09.015
  • Peltier, M. R., Klimova, N. G., Arita, Y., Gurzenda, E. M., Murthy, A., Chawala, K., Lerner, V., Richardson, J., & Hanna, N. (2012). Polybrominated diphenyl ethers enhance the production of proinflammatory cytokines by the placenta. Placenta, 33(9), 745–749. https://doi.org/10.1016/j.placenta.2012.06.005
  • Petit, J., Wakx, A., Gil, S., Fournier, T., Auzeil, N., Rat, P., & Laprévote, O. (2018). Lipidome-wide disturbances of human placental JEG-3 cells by the presence of MEHP. Biochimie, 149, 1–8. https://doi.org/10.1016/j.biochi.2018.03.002
  • Pratt, J. P., Kaucher, M., Richards, A. J., Williams, H. H., & Macy, I. C. (1946). Composition of the human placenta: I. proximate composition. American Journal of Obstetrics and Gynecology, 52(3), 402–408. https://doi.org/10.1016/S0002-9378(15)30252-0
  • Rantakokko, P., Main, K. M., Wohlfart-Veje, C., Kiviranta, H., Airaksinen, R., Vartiainen, T., Skakkebaek, N. E., Toppari, J., & Virtanen, H. E. (2013). Association of placenta organotin concentrations with congenital cryptorchidism and reproductive hormone levels in 280 newborn boys from Denmark and Finland. Human Reproduction, 28(6), 1647–1660. https://doi.org/10.1093/humrep/det040
  • Rantakokko, P., Main, K. M., Wohlfart-Veje, C., Kiviranta, H., Airaksinen, R., Vartiainen, T., Skakkebaek, N. E., Toppari, J., & Virtanen, H. E. (2014). Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: A cohort study. Environmental Health: A Global Access Science Source, 13(1), 45–49. https://doi.org/10.1186/1476-069X-13-45
  • Rees, S., & Inder, T. (2005). Fetal and neonatal origins of altered brain development. Early Human Development, 81(9), 753–761. https://doi.org/10.1016/j.earlhumdev.2005.07.004
  • Ren, A., Qiu, X., Jin, L., Ma, J., Li, Z., Zhang, L., Zhu, H., Finnell, R. H., & Zhu, T. (2011). Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12770–12775. https://doi.org/10.1073/pnas.1105209108
  • Ridano, M. E., Racca, A. C., Flores-Martín, J., Camolotto, S. A., de Potas, G. M., Genti-Raimondi, S., & Panzetta-Dutari, G. M. (2012). Chlorpyrifos modifies the expression of genes involved in human placental function. Reproductive Toxicology (Elmsford, N.Y.), 33(3), 331–338. https://doi.org/10.1016/j.reprotox.2012.01.003
  • Rosenfeld, C. S. (2015). Sex-specific placental responses in fetal development. Endocrinology, 156(10), 3422–3434. https://doi.org/10.1210/en.2015-1227
  • Sarkar, P., Shiizaki, K., Yonemoto, J., & Sone, H. (2006). Activation of telomerase in BeWo cells by estrogen and 2,3,7,8-tetrachlorodibenzo-p-dioxin in co-operation with c-Myc. International Journal of Oncology, 28(1), 43–51. https://doi.org/10.3892/ijo.28.1.43
  • Sever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709. https://doi.org/10.1101/cshperspect.a016709
  • Shen, H., Main, K. M., Andersson, A. M., Damgaard, I. N., Virtanen, H. E., Skakkebaek, N. E., Toppari, J., & Schramm, K. W. (2008). Concentrations of persistent organochlorine compounds in human milk and placenta are higher in Denmark than in Finland. Human Reproduction (Oxford, England), 23(1), 201–210. https://doi.org/10.1093/humrep/dem199
  • Shen, H., Main, K. M., Virtanen, H. E., Damggard, I. N., Haavisto, A. M., Kaleva, M., Boisen, K. A., Schmidt, I. M., Chellakooty, M., Skakkebaek, N. E., Toppari, J., & Schramm, K. W. (2007). From mother to child: Investigation of prenatal and postnatal exposure to persistent bioaccumulating toxicants using breast milk and placenta biomonitoring. Chemosphere, 67(9), S256–S262. https://doi.org/10.1016/j.chemosphere.2006.05.106
  • Shoaito, H., Petit, J., Chissey, A., Auzeil, N., Guibourdenche, J., Gil, S., Laprévote, O., Fournier, T., & Degrelle, S. A. (2019). The role of peroxisome proliferator–activated receptor gamma (PPARγ) in mono (2-ethylhexyl) phthalate (MEHP)-mediated cytotrophoblast differentiation. Environmental Health Perspectives, 127(2), 27003. https://doi.org/10.1289/EHP3730
  • Singh, V. K., Singh, J., Anand, M., Kumar, P., Patel, D. K., Reddy, M. M. K., & Siddiqui, M. K. J. (2008). Comparison of polycyclic aromatic hydrocarbon levels in placental tissues of Indian women with full − and preterm deliveries. International Journal of Hygiene and Environmental Health, 211(5-6), 639–647. https://doi.org/10.1016/j.ijheh.2007.11.004
  • Stillerman, K. P., Mattison, D. R., Giudice, L. C., & Woodruff, T. J. (2008). Environmental exposures and adverse pregnancy outcomes: A review of the science. Reproductive Sciences (Thousand Oaks, Calif.), 15(7), 631–650. https://doi.org/10.1177/1933719108322436
  • Sun, Y., Li, X., Benmarhnia, T., Chen, J. C., Avila, C., Sacks, D. A., Chiu, V., Slezak, J., Molitor, J., Getahun, D., & Wu, J. (2022). Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. Environment International, 158, 106888. https://doi.org/10.1016/j.envint.2021.106888
  • Szilagyi, J. T., Freedman, A. N., Kepper, S. L., Keshava, A. M., Bangma, J. T., & Fry, R. C. (2020). Per-and polyfluoroalkyl substances differentially inhibit placental trophoblast migration and invasion in vitro. Toxicological Sciences: An Official Journal of the Society of Toxicology, 175(2), 210–219. https://doi.org/10.1093/toxsci/kfaa043
  • Tetz, L. M., Cheng, A. A., Korte, C. S., Giese, R. W., Wang, P., Harris, C., Meeker, J. D., & Loch-Caruso, R. (2013). Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro. Toxicology and Applied Pharmacology, 268(1), 47–54. https://doi.org/10.1016/j.taap.2013.01.020
  • Tan, H., Chen, Q., Hong, H., Benfenati, E., Gini, G. C., Zhang, X., Yu, H., & Shi, W. (2021). Structures of endocrine-disrupting chemicals correlate with the activation of 12 classic nuclear receptors. Environmental Science & Technology, 55(24), 16552–16562. https://doi.org/10.1021/acs.est.1c04997
  • Thomas, K. N., Zimmel, K. N., Roach, A. N., Basel, A., Mehta, N. A., Bedi, Y. S., & Golding, M. C. (2021). Maternal background alters the penetrance of growth phenotypes and sex‐specific placental adaptation of offspring sired by alcohol‐exposed males. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 35(12), e22035. https://doi.org/10.1096/fj.202101131R
  • Ticiani, E., Gingrich, J., Pu, Y., Vettathu, M., Davis, J., Martin, D., Petroff, M. G., & Veiga-Lopez, A. (2021). Bisphenol S and epidermal growth factor receptor signaling in human placental cytotrophoblasts. Environmental Health Perspectives, 129(2), 27005. https://doi.org/10.1289/EHP7297
  • Troisi, J., Mikelson, C., Richards, S., Symes, S., Adair, D., Zullo, F., & Guida, M. (2014). Placental concentrations of bisphenol A and birth weight from births in the Southeastern US. Placenta, 35(11), 947–952. https://doi.org/10.1016/j.placenta.2014.08.091
  • Tsang, H., Cheung, T. Y., Kodithuwakku, S. P., Chai, J., Yeung, W. S., Wong, C. K., & Lee, K. F. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway. Reproductive Toxicology (Elmsford, N.Y.), 33(1), 60–66. https://doi.org/10.1016/j.reprotox.2011.11.002
  • Turco, M. Y., & Moffett, A. (2019). Development of the human placenta. Development, 146(22), dev163428. https://doi.org/10.1242/dev.163428
  • Tyagi, V., Garg, N., Mustafa, M. D., Banerjee, B. D., & Guleria, K. (2015). Organochlorine pesticide levels in maternal blood and placental tissue with reference to preterm birth: A recent trend in North Indian population. Environmental Monitoring and Assessment, 187(7), 1–9. https://doi.org/10.1007/s10661-015-4369-x
  • Vähäkangas, K., Raunio, H., Pasanen, M., Sivonen, P., Park, S. S., Gelboin, H. V., & Pelkonen, O. (1989). Comparison of the formation of benzo[a]pyrene diolepoxide‐dna adducts in vitro by rat and human microsomes: Evidence for the involvement of p‐450IA1 and p‐450IA2. Journal of Biochemical Toxicology, 4(2), 79–86. https://doi.org/10.1002/jbt.2570040203
  • Vähäkangas, K., & Myllynen, P. (2009). Drug transporters in the human blood-placental barrier. British Journal of Pharmacology, 158(3), 665–678. https://doi.org/10.1111/j.1476-5381.2009.00336.x
  • van den Dries, M. A., Ferguson, K. K., Keil, A. P., Pronk, A., Spaan, S., Ghassabian, A., Santos, S., Jaddoe, V. W. V., Trasande, L., Tiemeier, H., & Guxens, M. (2021). Prenatal exposure to nonpersistent chemical mixtures and offspring IQ and emotional and behavioral problems. Environmental Science & Technology, 55(24), 16502–16514. https://doi.org/10.1021/acs.est.1c04455
  • Vlahos, A., Mansell, T., Saffery, R., & Novakovic, B. (2019). Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genetics, 15(8), e1008236. https://doi.org/10.1371/journal.pgen.1008236
  • Wakx, A., Nedder, M., Tomkiewicz-Raulet, C., Dalmasso, J., Chissey, A., Boland, S., Vibert, F., Degrelle, S., Fournier, T., Coumoul, X., Gil, S., & Ferecatu, I. (2018). Expression, localization, and activity of the aryl hydrocarbon receptor in the human placenta. International Journal of Molecular Sciences, 19(12), 3762. https://doi.org/10.3390/ijms19123762
  • Wang, B., Liu, J. J., Wang, Y., Fu, L., Shen, R., Yu, Z., Wang, H., Chen, Y., Zhang, C., Meng, X., Xu, D., & Xu, D. X. (2017). Maternal fenvalerate exposure induces fetal intrauterine growth restriction through disrupting placental thyroid hormone receptor signaling. Toxicological Sciences: An Official Journal of the Society of Toxicology, 157(2), 377–386. https://doi.org/10.1093/toxsci/kfx052
  • Wang, Y., Gao, W., Wang, Y., & Jiang, G. (2018). Distribution and pattern profiles of chlorinated paraffins in human placenta of Henan Province, China. Environmental Science & Technology Letters, 5(1), 9–13. https://doi.org/10.1021/acs.estlett.7b00499
  • Wang, Y., Hong, J., Shi, M., Guo, L., Liu, L., Tang, H., & Liu, X. (2021). Triphenyl phosphate disturbs the lipidome and induces endoplasmic reticulum stress and apoptosis in JEG-3 cells. Chemosphere, 275, 129978. https://doi.org/10.1016/j.chemosphere.2021.129978
  • Wigle, D. T., Arbuckle, T. E., Turner, M. C., Bérubé, A., Yang, Q., Liu, S., & Krewski, D. (2008). Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 11(5-6), 373–517. https://doi.org/10.1080/10937400801921320
  • Xu, L., Huo, X., Zhang, Y., Li, W., Zhang, J., & Xu, X. (2015). Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. Environmental Pollution (Barking, Essex : 1987), 196, 414–422. https://doi.org/10.1016/j.envpol.2014.11.002
  • Xu, W., Wu, H., & Shang, L. (2021). Gene expression in rat placenta after exposure to di(2-ethylhexyl) phthalate. Human & Experimental Toxicology, 40(3), 504–514. https://doi.org/10.1177/0960327120954259
  • Xu, Y., Cook, T. J., & Knipp, G. T. (2005). Effects of di-(2-ethylhexyl)-phthalate (DEHP) and its metabolites on fatty acid homeostasis regulating proteins in rat placental HRP-1 trophoblast cells. Toxicological Sciences: An Official Journal of the Society of Toxicology, 84(2), 287–300. https://doi.org/10.1093/toxsci/kfi083
  • Yang, S., Li, H., Ge, Q., Guo, L., & Chen, F. (2015). Deregulated microRNA species in the plasma and placenta of patients with preeclampsia. Molecular Medicine Reports, 12(1), 527–534. https://doi.org/10.3892/mmr.2015.3414
  • Ye, Y., Tang, Y., Xiong, Y., Feng, L., & Li, X. (2019). Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 2732–2742. https://doi.org/10.1096/fj.201800934RRR
  • Yin, S., Zhang, J., Guo, F., Poma, G., Covaci, A., & Liu, W. (2020). Transplacental transfer mechanism of organochlorine pesticides: An in vitro transcellular transport study. Environment International, 135, 105402. https://doi.org/10.1016/j.envint.2019.105402
  • Yu, Z., Han, Y., Shen, R., Huang, K., Xu, Y. Y., Wang, Q. N., Zhou, S. S., Xu, D. X., & Tao, F. B. (2018). Gestational di-(2-ethylhexyl) phthalate exposure causes fetal intrauterine growth restriction through disturbing placental thyroid hormone receptor signaling. Toxicology Letters, 294, 1–10. https://doi.org/10.1016/j.toxlet.2018.05.013
  • Zhang, L., & Shiverick, K. T. (1998). Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo(a)pyrene on proliferation and growth factor gene expression in human choriocarcinoma BeWo cells. Placenta, 19, 177–191. https://doi.org/10.1016/S0143-4004(98)80014-3
  • Zhang, S., Sun, C., Zhao, S., Wang, B., Wang, H., Zhang, J., Wang, Y., Cheng, H., Zhu, L., Shen, R., Sun, M., Xu, T., & Zhao, L. (2020). Exposure to DEHP or its metabolite MEHP promotes progesterone secretion and inhibits proliferation in mouse placenta or JEG-3 cells. Environmental Pollution (Barking, Essex : 1987), 257, 113593. https://doi.org/10.1016/j.envpol.2019.113593
  • Zhao, M., Zhang, Y., Zhuang, S., Zhang, Q., Lu, C., & Liu, W. (2014). Disruption of the hormonal network and the enantioselectivity of bifenthrin in trophoblast: Maternal-fetal health risk of chiral pesticides. Environmental Science & Technology, 48(14), 8109–8116. https://doi.org/10.1021/es501903b
  • Zhao, Y., Chen, X., Liu, X., Ding, Y., Gao, R., Qiu, Y., Wang, Y., & He, J. (2014). Exposure of mice to benzo(a)pyrene impairs endometrial receptivity and reduces the number of implantation sites during early pregnancy. Food and Chemical Toxicology, 69, 244–251. https://doi.org/10.1016/j.fct.2014.04.021
  • Zhao, Y., Liu, P., Wang, J., Xiao, X., Meng, X., & Zhang, Y. (2016). Umbilical cord blood PBDEs concentrations are associated with placental DNA methylation. Environment International, 97, 1–6. https://doi.org/10.1016/j.envint.2016.10.014
  • Zhao, Y., Song, Q., Ge, W., Jin, Y., Chen, S., Zhao, Y., Xiao, X., & Zhang, Y. (2019). Associations between in utero exposure to polybrominated diphenyl ethers, pathophysiological state of fetal growth and placental DNA methylation changes. Environment International, 133(Pt B), 105255. https://doi.org/10.1016/j.envint.2019.105255
  • Zhong, J., Baccarelli, A. A., Mansur, A., Adir, M., Nahum, R., Hauser, R., Bollati, V., Racowsky, C., & Machtinger, R. (2019). Maternal phthalate and personal care products exposure alters extracellular placental miRNA profile in twin pregnancies. Reproductive Sciences (Thousand Oaks, Calif.), 26(2), 289–294. https://doi.org/10.1177/1933719118770550

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.