1,030
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Visualizing biogeochemical heterogeneity in soils and sediments: A review of advanced micro-scale sampling and imaging methods

, , , , &
Pages 1229-1253 | Published online: 02 Oct 2022

References

  • Aller, R. C., Aller, J. Y., Zhu, Q., Heilbrun, C., Klingensmith, I., & Kaushik, A. (2019). Worm tubes as conduits for the electrogenic microbial grid in marine sediments. Science Advances, 5(7), eaaw3651. http://dx.doi.org/10.1126/sciadv.aaw3651
  • Bachar, A., Polerecky, L., Fischer, J. P., Vamvakopoulos, K., de Beer, D., & Jonkers, H. M. (2008). Two-dimensional mapping of photopigment distribution and activity of Chloroflexus-like bacteria in a hypersaline microbial mat. FEMS Microbiology Ecology, 65(3), 434–448. http://dx.doi.org/10.1111/j.1574-6941.2008.00534.x
  • Baldrian, P., & Vetrovsky, T. (2012). Scaling down the analysis of environmental processes: Monitoring enzyme activity in natural substrates on a millimeter resolution scale. Applied and Environmental Microbiology, 78(9), 3473–3475. http://dx.doi.org/10.1128/AEM.07953-11
  • Barcellos, D., Jensen, S. S. K., Bernardino, A. F., Gabriel, F. A., Ferreira, T. O., & Quintana, C. O. (2021). Benthic bioturbation: A canary in the mine for the retention and release of metals from estuarine sediments. Marine Pollution Bulletin, 172, 112912. http://dx.doi.org/10.1016/j.marpolbul.2021.112912
  • Bennett, W. W., Welsh, D. T., Serriere, A., Panther, J. G., & Teasdale, P. R. (2015). A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters. Chemosphere, 119, 547–552. http://dx.doi.org/10.1016/j.chemosphere.2014.07.042
  • Bilyera, N., Hummel, C., Daudin, G., Santangeli, M., Zhang, X., Santner, J., Lippold, E., Schlüter, S., Bertrand, I., Wenzel, W., Spielvogel, S., Vetterlein, D., Razavi, B. S., & Oburger, E. (2022). Co-localised phosphorus mobilization processes in the rhizosphere of field-grown maize jointly contribute to plant nutrition. Soil Biology and Biochemistry, 165, 108497. http://dx.doi.org/10.1016/j.soilbio.2021.108497
  • Borisov, S. M., Mayr, T., Mistlberger, G., Waich, K., Koren, K., Chojnacki, P., & Klimant, I. (2009). Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta, 79(5), 1322–1330. http://dx.doi.org/10.1016/j.talanta.2009.05.041
  • Brodersen, K. E., Koren, K., Moßhammer, M., Ralph, P. J., Kühl, M., & Santner, J. (2017). Seagrass-mediated phosphorus and iron solubilization in tropical sediments. Environmental Science & Technology, 51(24), 14155–14163. http://dx.doi.org/10.1021/acs.est.7b03878
  • Cai, C., Williams, P. N., Li, H., Davison, W., Wei, T. J., Luo, J., Zhu, Y. G., & Zhang, H. (2017). Development and application of the diffusive gradients in thin films technique for the measurement of nitrate in soils. Analytical Chemistry, 89(2), 1178–1184. http://dx.doi.org/10.1021/acs.analchem.6b03609
  • Cao, Z., Zhu, Q., Aller, R. C., & Aller, J. Y. (2011). A fluorosensor for two-dimensional measurements of extracellular enzyme activity in marine sediments. Marine Chemistry, 123(1-4), 23–31. http://dx.doi.org/10.1016/j.marchem.2010.09.002
  • Cesbron, F., Metzger, E., Launeau, P., Deflandre, B., Delgard, M. L., Thibault de Chanvalon, A., Geslin, E., Anschutz, P., & Jezequel, D. (2014). Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods. Environmental Science & Technology, 48(5), 2816–2826. http://dx.doi.org/10.1021/es404724r
  • Dalfen, I., Dmitriev, R. I., Holst, G., Klimant, I., & Borisov, S. M. (2019). Background-free fluorescence-decay-time sensing and imaging of pH with highly photostable diazaoxotriangulenium dyes. Analytical Chemistry, 91(1), 808–816. http://dx.doi.org/10.1021/acs.analchem.8b02534
  • Davison, W., Grime, G. W., Morgan, J. A. W., & Clarke, K. (1991). Distribution of dissolved iron in sediment pore waters at submillimetre resolution. Nature, 352(6333), 323–325. http://dx.doi.org/10.1038/352323a0
  • Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367(6463), 546–548. http://dx.doi.org/10.1038/367546a0
  • Ding, S., Jia, F., Xu, D., Sun, Q., Zhang, L., Fan, C., & Zhang, C. (2011). High-resolution, two-dimensional measurement of dissolved reactive phosphorus in sediments using the diffusive gradients in thin films technique in combination with a routine procedure. Environmental Science & Technology, 45(22), 9680–9686. http://dx.doi.org/10.1021/es202785p
  • Ding, S., Sun, Q., Xu, D., Jia, F., He, X., & Zhang, C. (2012). High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: The first observation of their simultaneous release in sediments. Environmental Science & Technology, 46(15), 8297–8304. http://dx.doi.org/10.1021/es301134h
  • Ding, S., Wang, Y., Xu, D., Zhu, C., & Zhang, C. (2013). Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films. Environmental Science & Technology, 47(14), 7821–7829. http://dx.doi.org/10.1021/es400192j
  • Dinkelaker, B., Hahn, G., Römheld, V., Wolf, G. A., & Marschner, H. (1993). Non-destructive methods for demonstrating chemical changes in the rhizosphere I. Description of methods. Plant and Soil, 155-156(1), 67–70. http://dx.doi.org/10.1007/BF00024985
  • Dinkelaker, B., & Marschner, H. (1992). In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant and Soil, 144(2), 199–205. https://doi.org/10.1007/BF00012876
  • Dong, S., Brooks, D., Jones, M. D., & Grayston, S. J. (2007). A method for linking in situ activities of hydrolytic enzymes to associated organisms in forest soils. Soil Biology and Biochemistry, 39(9), 2414–2419. http://dx.doi.org/10.1016/j.soilbio.2007.03.030
  • Duan, C., Fang, L., Yang, C., Chen, W., Cui, Y., & Li, S. (2018). Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicology and Environmental Safety, 156, 106–115. http://dx.doi.org/10.1016/j.ecoenv.2018.03.015
  • Duan, C., Razavi, B. S., Shen, G., Cui, Y., Ju, W., Li, S., & Fang, L. (2019). Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 137, 107574. http://dx.doi.org/10.1016/j.soilbio.2019.107574
  • Elgetti Brodersen, K., Koren, K., Lichtenberg, M., & Kuhl, M. (2016). Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: Effects of temperature elevation and light-dark transitions. Plant, Cell & Environment, 39(7), 1619–1630. http://dx.doi.org/10.1111/pce.12740
  • Elgetti Brodersen, K., Kuhl, M., Trampe, E., & Koren, K. (2020). Imaging O2 dynamics and microenvironments in the seagrass leaf phyllosphere with magnetic optical sensor nanoparticles. The Plant Journal: For Cell and Molecular Biology, 104(6), 1504–1519. http://dx.doi.org/10.1111/tpj.15017
  • Fan, Y., Zhu, Q., Aller, R. C., & Rhoads, D. C. (2011). An In Situ Multispectral Imaging System for Planar Optodes in Sediments: Examples of High-Resolution Seasonal Patterns of pH. Aquatic Geochemistry, 17(4-5), 457–471. http://dx.doi.org/10.1007/s10498-011-9124-5
  • Fang, W., Williams, P. N., Zhang, H., Yang, Y., Yin, D., Liu, Z., Sun, H., & Luo, J. (2021). Combining multiple high-resolution in situ techniques to understand phosphorous availability around rice roots. Environmental Science and Technology, 55, 13082–13092. http://dx.doi.org/10.1021/acs.est.1c05358
  • Fang, Z., Li, K., Li, Y., Zhang, H., Jones, K. C., Liu, X., Liu, S., Ma, L. Q., & Luo, J. (2019). Development and application of the diffusive gradients in thin-films technique for measuring psychiatric pharmaceuticals in natural waters. Environmental Science & Technology, 53(19), 11223–11231. http://dx.doi.org/10.1021/acs.est.9b03166
  • Fang, Z., Li, Y., Li, Y., Yang, D., Zhang, H., Jones, K. C., Gu, C., & Luo, J. (2021). Development and applications of novel DGT passive samplers for measuring 12 per- and polyfluoroalkyl substances in natural waters and wastewaters. Environmental Science & Technology, 55(14), 9548–9556. http://dx.doi.org/10.1021/acs.est.0c08092
  • Fernández, B., Claverie, F., Pécheyran, C., Donard, O. F. X., & Claverie, F. (2007). Direct analysis of solid samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10), 951–966. http://dx.doi.org/10.1016/j.trac.2007.08.008
  • Gao, Y., van de Velde, S., Williams, P. N., Baeyens, W., & Zhang, H. (2015). Two-dimensional images of dissolved sulfide and metals in anoxic sediments by a novel diffusive gradients in thin film probe and optical scanning techniques. TrAC Trends in Analytical Chemistry, 66, 63–71. http://dx.doi.org/10.1016/j.trac.2014.11.012
  • Gao, Y., Zhou, C., Gaulier, C., Bratkic, A., Galceran, J., Puy, J., Zhang, H., Leermakers, M., & Baeyens, W. (2019). Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. TrAC Trends in Analytical Chemistry, 116, 92–101. http://dx.doi.org/10.1016/j.trac.2019.04.027
  • Ge, T., Wei, X., Razavi, B. S., Zhu, Z., Hu, Y., Kuzyakov, Y., Jones, D. L., & Wu, J. (2017). Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biology and Biochemistry, 113, 108–115. http://dx.doi.org/10.1016/j.soilbio.2017.06.005
  • Giles, C. D., Dupuy, L., Boitt, G., Brown, L. K., Condron, L. M., Darch, T., Blackwell, M. S. A., Menezes-Blackburn, D., Shand, C. A., Stutter, M. I., Lumsdon, D. G., Wendler, R., Cooper, P., Wearing, C., Zhang, H., Haygarth, P. M., & George, T. S. (2018). Root development impacts on the distribution of phosphatase activity: Improvements in quantification using soil zymography. Soil Biology and Biochemistry, 116, 158–166. http://dx.doi.org/10.1016/j.soilbio.2017.08.011
  • Glud, R. N., Grossart, H.-P., Larsen, M., Tang, K. W., Arendt, K. E., Rysgaard, S., Thamdrup, B., & Gissel Nielsen, T. (2015). Copepod carcasses as microbial hot spots for pelagic denitrification. Limnology and Oceanography, 60(6), 2026–2036. http://dx.doi.org/10.1002/lno.10149
  • Glud, R. N., Ramsing, N. B., Gundersen, J. K., & Klimant, I. (1996). Planar optrodes: A new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Marine Ecology Progress Series, 140, 217–226. http://dx.doi.org/10.3354/meps140217
  • Glud, R. N., Tengberg, A., Kühl, M., Hall, P. O. J., & Klimant, I. (2001). An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnology and Oceanography, 46(8), 2073–2080. http://dx.doi.org/10.4319/lo.2001.46.8.2073
  • Guan, D. X. (2019). Diffusive gradients in thin-films (DGT): An effective and simple tool for assessing contaminant bioavailability in waters, soils and sediments. Encyclopedia of Environmental Health (Second Edition), 2, 111–124. http://dx.doi.org/10.1016/b978-0-12-409548-9.11403-4
  • Guan, D. X., He, S.-X., Li, G., Teng, H. H., & Ma, L. Q. (2022). Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils. Critical Reviews in Environmental Science and Technology, 52(17), 3035–3079. http://dx.doi.org/10.1080/10643389.2021.1900765
  • Guan, D. X., Williams, P. N., Luo, J., Zheng, J. L., Xu, H. C., Cai, C., & Ma, L. Q. (2015). Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments. Environmental Science & Technology, 49(6), 3653–3661. http://dx.doi.org/10.1021/es505424m
  • Guan, D. X., Williams, P. N., Xu, H. C., Li, G., Luo, J., & Ma, L. Q. (2016). High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. Journal of Hazardous Materials, 316, 69–76. http://dx.doi.org/10.1016/j.jhazmat.2016.05.026
  • Guber, A., Kravchenko, A., Razavi, B. S., Uteau, D., Peth, S., Blagodatskaya, E., & Kuzyakov, Y. (2018). Quantitative soil zymography: Mechanisms, processes of substrate and enzyme diffusion in porous media. Soil Biology and Biochemistry, 127, 156–167. http://dx.doi.org/10.1016/j.soilbio.2018.09.030
  • Guber, A. K., Kravchenko, A. N., Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2019). Calibration of 2-D soil zymography for correct analysis of enzyme distribution. European Journal of Soil Science, 70(4), 715–726. http://dx.doi.org/10.1111/ejss.12744
  • Han, C., Ren, J., Wang, Z., Tang, H., & Xu, D. (2017). A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water. Water Research, 108, 179–188. http://dx.doi.org/10.1016/j.watres.2016.10.075
  • He, S., Wang, X., Wu, X., Yin, Y., & Ma, L. Q. (2020). Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. Environment International, 141, 105799. http://dx.doi.org/10.1016/j.envint.2020.105799
  • Herbert, L. C., Zhu, Q., Michaud, A. B., Laufer‐Meiser, K., Jones, C. K., Riedinger, N., Stooksbury, Z. S., Aller, R. C., Jørgensen, B. B., & Wehrmann, L. M. (2021). Benthic iron flux influenced by climate‐sensitive interplay between organic carbon availability and sedimentation rate in Arctic fjords. Limnology and Oceanography, 66(9), 3374–3392. http://dx.doi.org/10.1002/lno.11885
  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist, 168(2), 293–303. http://dx.doi.org/10.1111/j.1469-8137.2005.01512.x
  • Hoang, D. T. T., Razavi, B. S., Kuzyakov, Y., & Blagodatskaya, E. (2016). Earthworm burrows: Kinetics and spatial distribution of enzymes of C-, N- and P- cycles. Soil Biology and Biochemistry, 99, 94–103. http://dx.doi.org/10.1016/j.soilbio.2016.04.021
  • Hoefer, C., Santner, J., Borisov, S. M., Wenzel, W. W., & Puschenreiter, M. (2017). Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Analytica Chimica Acta, 950, 88–97. http://dx.doi.org/10.1016/j.aca.2016.11.004
  • Hoefer, C., Santner, J., Puschenreiter, M., & Wenzel, W. W. (2015). Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application. Environmental Science & Technology, 49(7), 4522–4529. http://dx.doi.org/10.1021/es505758j
  • Hummel, C., Boitt, G., Santner, J., Lehto, N. J., Condron, L., & Wenzel, W. W. (2021). Co-occurring increased phosphatase activity and labile P depletion in the rhizosphere of Lupinus angustifolius assessed with a novel, combined 2D-imaging approach. Soil Biology and Biochemistry, 153, 107963. http://dx.doi.org/10.1016/j.soilbio.2020.107963
  • Ilhardt, P. D., Nuñez, J. R., Denis, E. H., Rosnow, J. J., Krogstad, E. J., Renslow, R. S., & Moran, J. J. (2019). High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS). Soil Biology and Biochemistry, 131, 119–132. http://dx.doi.org/10.1016/j.soilbio.2018.12.029
  • Jézéquel, D., Brayner, R., Metzger, E., Viollier, E., Prévot, F., & Fiévet, F. (2007). Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France). Estuarine, Coastal and Shelf Science, 72(3), 420–431. http://dx.doi.org/10.1016/j.ecss.2006.11.031
  • Jiang, Z., Yu, X., & Hao, Y. (2017). Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen. Sensors, 17(6), 1316. http://dx.doi.org/10.3390/s17061316
  • Kankanamge, N. R., Bennett, W. W., Teasdale, P. R., Huang, J., & Welsh, D. T. (2020). A new colorimetric DET technique for determining mm-resolution sulfide porewater distributions and allowing improved interpretation of iron(II) co-distributions. Chemosphere, 244, 125388. http://dx.doi.org/10.1016/j.chemosphere.2019.125388
  • Koren, K., Borisov, S. M., & Klimant, I. (2012). Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins-A convenient way to eliminate dye migration and leaching. Sensors and Actuators. B, Chemical, 169(5), 173–181. http://dx.doi.org/10.1016/j.snb.2012.04.062
  • Koren, K., Brodersen, K. E., Jakobsen, S. L., & Kuhl, M. (2015). Optical sensor nanoparticles in artificial sediments–A new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environmental Science & Technology, 49(4), 2286–2292. http://dx.doi.org/10.1021/es505734b
  • Koren, K., Jakobsen, S. L., & Kühl, M. (2016). In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sensors and Actuators B: Chemical, 237, 1095–1101. http://dx.doi.org/10.1016/j.snb.2016.05.147
  • Koren, K., Moßhammer, M., Scholz, V. V., Borisov, S. M., Holst, G., & Kühl, M. (2019). Luminescence lifetime imaging of chemical sensors—A comparison between time-domain and frequency-domain based camera systems. Analytical Chemistry, 91(5), 3233–3238. http://dx.doi.org/10.1021/acs.analchem.8b05869
  • Koren, K., & Zieger, S. E. (2021). Optode based chemical imaging-possibilities, challenges, and new avenues in multidimensional optical sensing. ACS Sensors, 6(5), 1671–1680. http://dx.doi.org/10.1021/acssensors.1c00480
  • Kreuzeder, A., Santner, J., Prohaska, T., & Wenzel, W. W. (2013). Gel for simultaneous chemical imaging of anionic and cationic solutes using diffusive gradients in thin films. Analytical Chemistry, 85(24), 12028–12036. http://dx.doi.org/10.1021/ac403050f
  • Kreuzeder, A., Santner, J., Scharsching, V., Oburger, E., Hoefer, C., Hann, S., & Wenzel, W. W. (2018). In situ observation of localized, sub-mm scale changes of phosphorus biogeochemistry in the rhizosphere. Plant and Soil, 424(1), 573–589. http://dx.doi.org/10.1007/s11104-017-3542-0
  • Kuhl, M., Holst, G., Larkum, A. W., & Ralph, P. J. (2008). Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. Journal of Phycology, 44(3), 541–550. http://dx.doi.org/10.1111/j.1529-8817.2008.00506.x
  • Kuzyakov, Y., & Razavi, B. S. (2019). Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 135, 343–360. http://dx.doi.org/10.1016/j.soilbio.2019.05.011
  • Larsen, M., Borisov, S. M., Grunwald, B., Klimant, I., & Glud, R. N. (2011). A simple and inexpensive high resolution color ratiometric planar optode imaging approach: Application to oxygen and pH sensing. Limnology and Oceanography: Methods, 9(9), 348–360. http://dx.doi.org/10.4319/lom.2011.9.348
  • Le Houedec, S., Thibault de Chanvalon, A., Mouret, A., Metzger, E., Launeau, P., Gaudin, P., & Lebeau, T. (2019). 2D image quantification of microbial iron chelators (siderophores) using diffusive equilibrium in thin films method. Analytical Chemistry, 91(2), 1399–1407. http://dx.doi.org/10.1021/acs.analchem.8b04021
  • Lee, M. H., Kim, J. S., & Sessler, J. L. (2015). Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews, 44(13), 4185–4191. http://dx.doi.org/10.1039/c4cs00280f
  • Lewandowski, J., Rüter, K., & Hupfer, M. (2002). Two-dimensional small-scale variability of pore water phosphate in freshwater lakes: Results from a novel dialysis sampler. Environmental Science & Technology, 36(9), 2039–2047. http://dx.doi.org/10.1021/es0102538
  • Li, C., Ding, S., Chen, M., Sun, Q., Zhang, Y., Ma, X., Zhong, Z., Tsang, D. C. W., & Wang, Y. (2021). Mechanistic insights into trace metal mobilization at the micro-scale in the rhizosphere of Vallisneria spiralis. The Science of the Total Environment, 806(Pt 3), 150735. http://dx.doi.org/10.1016/j.scitotenv.2021.150735
  • Li, C., Ding, S., Ma, X., Chen, M., Zhong, Z., Zhang, Y., Ren, M., Zhang, M., Yang, L., Rong, N., & Wang, Y. (2021). O2 distribution and dynamics in the rhizosphere of Phragmites australis, and implications for nutrient removal in sediments. Environmental Pollution (Barking, Essex: 1987), 287, 117193. http://dx.doi.org/10.1016/j.envpol.2021.117193
  • Li, C., Ding, S., Yang, L., Wang, Y., Ren, M., Chen, M., Fan, X., & Lichtfouse, E. (2019). Diffusive gradients in thin films: Devices, materials and applications. Environmental Chemistry Letters, 17(2), 801–831. http://dx.doi.org/10.1007/s10311-018-00839-9
  • Li, C., Ding, S., Yang, L., Zhu, Q., Chen, M., Tsang, D. C. W., Cai, G., Feng, C., Wang, Y., & Zhang, C. (2019). Planar optode: A two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil. Earth-Science Reviews, 197, 102916. http://dx.doi.org/10.1016/j.earscirev.2019.102916
  • Li, J., Yim, D., Jang, W. D., & Yoon, J. (2017). Recent progress in the design and applications of fluorescence probes containing crown ethers. Chemical Society Reviews, 46(9), 2437–2458. http://dx.doi.org/10.1039/c6cs00619a
  • Limbeck, A., Galler, P., Bonta, M., Bauer, G., Nischkauer, W., & Vanhaecke, F. (2015). Recent advances in quantitative LA-ICP-MS analysis: Challenges and solutions in the life sciences and environmental chemistry. Analytical and Bioanalytical Chemistry, 407(22), 6593–6617. http://dx.doi.org/10.1007/s00216-015-8858-0
  • Limmer, M. A., Evans, A. E., & Seyfferth, A. L. (2021). A new method to capture the spatial and temporal heterogeneity of aquatic plant iron root plaque in situ. Environmental Science & Technology, 55(2), 912–918. http://dx.doi.org/10.1021/acs.est.0c02949
  • Liu, L., Tang, W., Huang, J., Teasdale, P. R., Shu, L., & Zhang, H. (2020). In situ, high-resolution measurement of labile phosphate in sediment porewater using the DET technique coupled with optimized imaging densitometry. Environmental Research, 191, 110107. http://dx.doi.org/10.1016/j.envres.2020.110107
  • Liu, S., Pu, S., Deng, D., Huang, H., Yan, C., Ma, H., & Razavi, B. S. (2020). Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities. Environment International, 134, 105277. http://dx.doi.org/10.1016/j.envint.2019.105277
  • Ma, M., Wang, H., Xu, J., Huang, Y., Yuan, D., Zhang, X., & Song, Q. (2020). An in situ analyzer for two-dimensional Fe(II) distribution in sediment pore water based on ferrozine coloration and computer imaging densitometry. ACS Omega, 5(49), 31551–31558. http://dx.doi.org/10.1021/acsomega.0c03515
  • Ma, X., Liu, Y., Shen, W., & Kuzyakov, Y. (2021). Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: Coupling zymography with planar optodes. Applied Soil Ecology, 167, 104029. http://dx.doi.org/10.1016/j.apsoil.2021.104029
  • Ma, X., Liu, Y., Zarebanadkouki, M., Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2018). Spatiotemporal patterns of enzyme activities in the rhizosphere: Effects of plant growth and root morphology. Biology and Fertility of Soils, 54(7), 819–828. http://dx.doi.org/10.1007/s00374-018-1305-6
  • Ma, X., Mason-Jones, K., Liu, Y., Blagodatskaya, E., Kuzyakov, Y., Guber, A., Dippold, M. A., & Razavi, B. S. (2019). Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 135, 420–428. http://dx.doi.org/10.1016/j.soilbio.2019.06.001
  • Martin, B. C., Bougoure, J., Ryan, M. H., Bennett, W. W., Colmer, T. D., Joyce, N. K., Olsen, Y. S., & Kendrick, G. A. (2019). Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. The ISME Journal, 13(3), 707–719. http://dx.doi.org/10.1038/s41396-018-0308-5
  • Meier, R. J., Fischer, L. H., Wolfbeis, O. S., & Schäferling, M. (2013). Referenced luminescent sensing and imaging with digital color cameras: A comparative study. Sensors and Actuators B: Chemical, 177, 500–506. http://dx.doi.org/10.1016/j.snb.2012.11.041
  • Meier, R. J., Schreml, S., Wang, X. D., Landthaler, M., Babilas, P., & Wolfbeis, O. S. (2011). Simultaneous photographing of oxygen and pH in vivo using sensor films. Angewandte Chemie (International ed. in English), 50(46), 10893–10896. http://dx.doi.org/10.1002/anie.201104530
  • Merl, T., & Koren, K. (2020). Visualizing NH3 emission and the local O2 and pH microenvironment of soil upon manure application using optical sensors. Environment International, 144, 106080. http://dx.doi.org/10.1016/j.envint.2020.106080
  • Metzger, E., Barbe, A., Cesbron, F., Thibault de Chanvalon, A., Jauffrais, T., Jezequel, D., & Mouret, A. (2019). Two-dimensional ammonium distribution in sediment pore waters using a new colorimetric diffusive equilibration in thin-film technique. Water Research X, 2, 100023. http://dx.doi.org/10.1016/j.wroa.2018.100023
  • Metzger, E., Thibault de Chanvalon, A., Cesbron, F., Barbe, A., Launeau, P., Jezequel, D., & Mouret, A. (2016). Simultaneous nitrite/nitrate imagery at millimeter scale through the water-sediment interface. Environmental Science & Technology, 50(15), 8188–8195. http://dx.doi.org/10.1021/acs.est.6b00187
  • Moßhammer, M., Brodersen, K. E., Kühl, M., & Koren, K. (2019). Nanoparticle-and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: A review. Mikrochimica Acta, 186(2), 126. http://dx.doi.org/10.1007/s00604-018-3202-y
  • Moßhammer, M., Strobl, M., Kühl, M., Klimant, I., Borisov, S. M., & Koren, K. (2016). Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk. ACS Sensors, 1(6), 681–687. http://dx.doi.org/10.1021/acssensors.6b00071
  • Murniati, E., Gross, D., Herlina, H., Hancke, K., Glud, R. N., & Lorke, A. (2016). Oxygen imaging at the sediment-water interface using lifetime-based laser induced fluorescence (τLIF) of nano-sized particles. Limnology and Oceanography: Methods, 14(8), 506–517. http://dx.doi.org/10.1002/lom3.10108
  • Nielsen, S. D., Paegle, I., Borisov, S. M., Kje ldsen, K. U., Røy, H., Skibsted, J., & Koren, K. (2019). Optical sensing of pH and O2 in the evaluation of bioactive self-healing cement. ACS Omega, 4(23), 20237–20243. http://dx.doi.org/10.1021/acsomega.9b02541
  • Oburger, E., & Schmidt, H. (2016). New methods to unravel rhizosphere processes. Trends in Plant Science, 21(3), 243–255. http://dx.doi.org/10.1016/j.tplants.2015.12.005
  • Pages, A., Teasdale, P. R., Robertson, D., Bennett, W. W., Schafer, J., & Welsh, D. T. (2011). Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(II) and sulfide in seagrass sediment porewaters. Chemosphere, 85(8), 1256–1261. http://dx.doi.org/10.1016/j.chemosphere.2011.07.020
  • Pedersen, L. L., Smets, B. F., & Dechesne, A. (2015). Measuring biogeochemical heterogeneity at the micro scale in soils and sediments. Soil Biology and Biochemistry, 90, 122–138. http://dx.doi.org/10.1016/j.soilbio.2015.08.003
  • Przeslawski, R., Zhu, Q., & Aller, R. (2009). Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Marine Ecology Progress Series, 392, 33–42. http://dx.doi.org/10.3354/meps08221
  • Randriamamonjy, S., Mouret, A., Metzger, E., Gaudin, P., La, C., Capiaux, H., Launeau, P., Giraud, M., Cornu, J. Y., & Lebeau, T. (2021). 2D distribution of Pseudomonas fluorescens activities at the soil-root interface of sunflower grown on vineyard soils: Effects on copper uptake. Soil Biology and Biochemistry, 163, 108462. http://dx.doi.org/10.1016/j.soilbio.2021.108462
  • Razavi, B. S., Zhang, X., Bilyera, N., Guber, A., & Zarebanadkouki, M. (2019). Soil zymography: Simple and reliable? Review of current knowledge and optimization of the method. Rhizosphere, 11, 100161. http://dx.doi.org/10.1016/j.rhisph.2019.100161
  • Ren, M., Ding, S., Dai, Z., Wang, J., Li, C., Zhong, Z., Cao, J., Yang, L., Tsang, D. C., Xu, S., Yang, C., & Wang, Y. (2021). A new DGT technique comprising a hybrid sensor for the simultaneous high resolution 2-D imaging of sulfides, metallic cations, oxyanions and dissolved oxygen. Journal of Hazardous Materials, 403, 123597. http://dx.doi.org/10.1016/j.jhazmat.2020.123597
  • Robertson, D., Teasdale, P. R., & Welsh, D. T. (2008). A novel gel‐based technique for the high resolution, two‐dimensional determination of iron (II) and sulfide in sediment. Limnology and Oceanography: Methods, 6(10), 502–512. http://dx.doi.org/10.4319/lom.2008.6.502
  • Robertson, D., Welsh, D. T., & Teasdale, P. R. (2009). Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(II) and sulfide. Environmental Chemistry, 6(1), 60–69. http://dx.doi.org/10.1071/en08059
  • Roche, K. R., Aubeneau, A. F., Xie, M., Aquino, T., Bolster, D., & Packman, A. I. (2016). An integrated experimental and modeling approach to predict sediment mixing from benthic burrowing behavior. Environmental Science & Technology, 50(18), 10047–10054. http://dx.doi.org/10.1021/acs.est.6b01704
  • Rudolph, N., Tötzke, C., Kardjilov, N., & Oswald, S. E. (2017). Mapping water, oxygen, and pH dynamics in the rhizosphere of young maize roots. Journal of Plant Nutrition and Soil Science, 180(3), 336–346. http://dx.doi.org/10.1002/jpln.201600120
  • Sanaullah, M., Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2016). Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biology and Fertility of Soils, 52(4), 505–514. http://dx.doi.org/10.1007/s00374-016-1094-8
  • Santner, J., Larsen, M., Kreuzeder, A., & Glud, R. N. (2015). Two decades of chemical imaging of solutes in sediments and soils–A review. Analytica Chimica Acta, 878, 9–42. http://dx.doi.org/10.1016/j.aca.2015.02.006
  • Santner, J., Prohaska, T., Luo, J., & Zhang, H. (2010). Ferrihydrite containing gel for chemical imaging of labile phosphate species in sediments and soils using diffusive gradients in thin films. Analytical Chemistry, 82(18), 7668–7674. http://dx.doi.org/10.1021/ac101450j
  • Schreml, S., Meier, R. J., Wolfbeis, O. S., Landthaler, M., Szeimies, R. M., & Babilas, P. (2011). 2D luminescence imaging of pH in vivo. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2432–2437. http://dx.doi.org/10.1073/pnas.1006945108
  • Schreml, S., Meier, R. J., Wolfbeis, O. S., Maisch, T., Szeimies, R. M., Landthaler, M., Regensburger, J., Santarelli, F., Klimant, I., & Babilas, P. (2011). 2D luminescence imaging of physiological wound oxygenation. Experimental Dermatology, 20(7), 550–554. http://dx.doi.org/10.1111/j.1600-0625.2011.01263.x
  • Shi, R., Han, T., Xu, S., Huang, H., Qi, Z., & Zhu, Q. (2021). Bacterial community responses to the redox profile changes of mariculture sediment. Marine Pollution Bulletin, 166, 112250. http://dx.doi.org/10.1016/j.marpolbul.2021.112250
  • Shi, X., Fang, W., Tang, N., Williams, P. N., Hu, X., Liu, Z., Yin, D., Ma, L. Q., & Luo, J. (2018). In situ selective measurement of Se(IV) in waters and soils: Diffusive gradients in thin-films with Bi-functionalized silica nanoparticles. Environmental Science & Technology, 52(24), 14140–14148. http://dx.doi.org/10.1021/acs.est.8b03671
  • Shotbolt, L. (2010). Pore water sampling from lake and estuary sediments using Rhizon samplers. Journal of Paleolimnology, 44(2), 695–700. http://dx.doi.org/10.1007/s10933-008-9301-8
  • Spohn, M., Carminati, A., & Kuzyakov, Y. (2013). Soil zymography – A novel in situ method for mapping distribution of enzyme activity in soil. Soil Biology and Biochemistry, 58, 275–280. http://dx.doi.org/10.1016/j.soilbio.2012.12.004
  • Spohn, M., & Kuzyakov, Y. (2013). Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry, 67, 106–113. http://dx.doi.org/10.1016/j.soilbio.2013.08.015
  • Spohn, M., & Kuzyakov, Y. (2014). Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots—A soil zymography analysis. Plant and Soil, 379(1-2), 67–77. http://dx.doi.org/10.1007/s11104-014-2041-9
  • Stahl, H., Warnken, K. W., Sochaczewski, L., Glud, R. N., Davison, W., & Zhang, H. (2012). A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes. Limnology and Oceanography: Methods, 10(5), 389–401. http://dx.doi.org/10.4319/lom.2012.10.389
  • Stich, M. I. J., Fischer, L. H., & Wolfbeis, O. S. (2010). Multiple fluorescent chemical sensing and imaging. Chemical Society Reviews, 39(8), 3102–3114. http://dx.doi.org/10.1039/b909635n
  • Stockdale, A., Davison, W., & Zhang, H. (2008). High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulfide, in a freshwater sediment. Environmental Chemistry, 5(2), 143. http://dx.doi.org/10.1071/en07096
  • Stockdale, A., Davison, W., & Zhang, H. (2009). Micro-scale biogeochemical heterogeneity in sediments: A review of available technology and observed evidence. Earth-Science Reviews, 92(1-2), 81–97. http://dx.doi.org/10.1016/j.earscirev.2008.11.003
  • Stockdale, A., Davison, W., & Zhang, H. (2010). 2D simultaneous measurement of the oxyanions of P, V, As, Mo, Sb, W and U. Journal of Environmental Monitoring: JEM, 12(4), 981–984. http://dx.doi.org/10.1039/b925627j
  • Strömberg, N. (2008). Determination of ammonium turnover and flow patterns close to roots using imaging optodes. Environmental Science & Technology, 42(5), 1630–1637. http://dx.doi.org/10.1021/es071400q
  • Teasdale, P. R., Hayward, S., & Davison, W. (1999). In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry. Analytical Chemistry, 71(11), 2186–2191. http://dx.doi.org/10.1021/ac981329u
  • Tegtmeier, J., Dippold, M. A., Kuzyakov, Y., Spielvogel, S., & Loeppmann, S. (2021). Root-o-Mat: A novel tool for 2D image processing of root-soil interactions and its application in soil zymography. Soil Biology and Biochemistry, 157, 108236. http://dx.doi.org/10.1016/j.soilbio.2021.108236
  • Thibault de Chanvalon, A., Metzger, E., Mouret, A., Knoery, J., Geslin, E., & Meysman, F. J. R. (2017). Two dimensional mapping of iron release in marine sediments at submillimetre scale. Marine Chemistry, 191, 34–49. http://dx.doi.org/10.1016/j.marchem.2016.04.003
  • Trampe, E., Koren, K., Akkineni, A. R., Senwitz, C., Krujatz, F., Lode, A., Gelinsky, M., & Kühl, M. (2018). Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Advanced Functional Materials, 28(45), 1804411. http://dx.doi.org/10.1002/adfm.201804411
  • Valladares Linares, R., Fortunato, L., Farhat, N. M., Bucs, S. S., Staal, M., Fridjonsson, E. O., Johns, M. L., Vrouwenvelder, J. S., & Leiknes, T. (2016). Mini-review: Novel non-destructive in situ biofilm characterization techniques in membrane systems. Desalination and Water Treatment, 57(48-49), 22894–22901. http://dx.doi.org/10.1080/19443994.2016.1180483
  • Wagner, S., Hoefer, C., Prohaska, T., & Santner, J. (2020). Two-dimensional visualization and quantification of labile, inorganic plant nutrients and contaminants in soil. Journal of Visualized Experiments, 163, e61661. http://dx.doi.org/10.3791/61661
  • Wagner, S., Hummel, C., Santner, J., Puschenreiter, M., Irrgeher, J., Wenzel, W. W., Borisov, S. M., & Prohaska, T. (2022). In situ spatiotemporal solute imaging of metal corrosion on the example of magnesium. Analytica Chimica Acta, 1212, 339910. http://dx.doi.org/10.1016/j.aca.2022.339910
  • Wang, X. D., Meier, R. J., & Wolfbeis, O. S. (2012). A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Advanced Functional Materials, 22(20), 4202–4207. http://dx.doi.org/10.1002/adfm.201200813
  • Warnken, K. W., Zhang, H., & Davison, W. (2004). Performance characteristics of suspended particulate reagent-iminodiacetate as a binding agent for diffusive gradients in thin films. Analytica Chimica Acta, 508(1), 41–51. http://dx.doi.org/10.1016/j.aca.2003.11.051
  • Wei, X., Ge, T., Zhu, Z., Hu, Y., Liu, S., Li, Y., Wu, J., & Razavi, B. S. (2019). Expansion of rice enzymatic rhizosphere: Temporal dynamics in response to phosphorus and cellulose application. Plant and Soil, 445(1-2), 169–181. http://dx.doi.org/10.1007/s11104-018-03902-0
  • Williams, P. N., Santner, J., Larsen, M., Lehto, N. J., Oburger, E., Wenzel, W., Glud, R. N., Davison, W., & Zhang, H. (2014). Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice. Environmental Science & Technology, 48(15), 8498–8506. http://dx.doi.org/10.1021/es501127k
  • Wolfbeis, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44(14), 4743–4768. http://dx.doi.org/10.1039/c4cs00392f
  • Xu, D., Wu, W., Ding, S., Sun, Q., & Zhang, C. (2012). A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments. The Science of the Total Environment, 421-422, 245–252. http://dx.doi.org/10.1016/j.scitotenv.2012.01.062
  • Yao, Y., Wang, C., Wang, P., Miao, L., Hou, J., Wang, T., & Liu, C. (2016). Zr oxide-based coloration technique for two-dimensional imaging of labile Cr(VI) using diffusive gradients in thin films. The Science of the Total Environment, 566-567, 1632–1639. http://dx.doi.org/10.1016/j.scitotenv.2016.06.065
  • Yin, D. X., Fang, W., Guan, D. X., Williams, P. N., Moreno-Jimenez, E., Gao, Y., Zhao, F. J., Ma, L. Q., Zhang, H., & Luo, J. (2020). Localized intensification of arsenic release within the emergent rice rhizosphere. Environmental Science & Technology, 54(6), 3138–3147. http://dx.doi.org/10.1021/acs.est.9b04819
  • Yin, H., & Fan, C. (2011). Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Archives of Environmental Contamination and Toxicology, 60(4), 565–575. http://dx.doi.org/10.1007/s00244-010-9575-5
  • Yin, H., Zhu, Q., & Aller, R. C. (2017). An irreversible planar optical sensor for multi-dimensional measurements of sedimentary H2S. Marine Chemistry, 195, 143–152. http://dx.doi.org/10.1016/j.marchem.2017.03.005
  • Yuan, Y., Ding, S., Wang, Y., Zhang, L., Ren, M., & Zhang, C. (2018). Simultaneous measurement of fifteen rare earth elements using diffusive gradients in thin films. Analytica Chimica Acta, 1031, 98–107. http://dx.doi.org/10.1016/j.aca.2018.05.067
  • Yuan, Z. F., Gustave, W., Bridge, J., Liang, Y., Sekar, R., Boyle, J., Jin, C. Y., Pu, T. Y., Ren, Y. X., & Chen, Z. (2019). Tracing the dynamic changes of element profiles by novel soil porewater samplers with ultralow disturbance to soil-water interface. Environmental Science & Technology, 53(9), 5124–5132. http://dx.doi.org/10.1021/acs.est.8b05390
  • Zhang, H., & Davison, W. (2015). Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environmental Chemistry, 12(2), 85. http://dx.doi.org/10.1071/en14105
  • Zhang, Y., Li, C., Sun, Q., Jiang, C., Ding, S., Chen, M., Ma, X., Zhong, Z., Wang, Y., & Tsang, D. C. (2021). Phosphorus acquisition strategy of Vallisneria natans in sediment based on in situ imaging techniques. Environmental Research, 202, 111635. http://dx.doi.org/10.1016/j.envres.2021.111635
  • Zhou, C., Gao, Y., Gaulier, C., Luo, M., Zhang, X., Bratkic, A., Davison, W., & Baeyens, W. (2020). Advances in understanding mobilization processes of trace metals in marine sediments. Environmental Science & Technology, 54(23), 15151–15161. http://dx.doi.org/10.1021/acs.est.0c05954
  • Zhou, C., van de Velde, S., Baeyens, W., & Gao, Y. (2018). Comparison of Chelex based resins in diffusive gradients in thin-film for high resolution assessment of metals. Talanta, 186, 397–405. http://dx.doi.org/10.1016/j.talanta.2018.04.085
  • Zhu, Q. (2019). In situ planar optical sensors for sediment diagenesis study. Encyclopedia of Ocean Sciences (Third Edition), 4, 147–156. http://dx.doi.org/10.1016/b978-0-12-409548-9.09441-0
  • Zhu, Q., & Aller, R. C. (2012). Two-dimensional dissolved ferrous iron distributions in marine sediments as revealed by a novel planar optical sensor. Marine Chemistry, 136-137, 14–23. http://dx.doi.org/10.1016/j.marchem.2012.04.002
  • Zhu, Q., Aller, R. C., & Fan, Y. (2005). High-performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water. Environmental Science & Technology, 39(22), 8906–8911. http://dx.doi.org/10.1021/es051023m
  • Zhu, Q., Aller, R. C., & Fan, Y. (2006). Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochimica et Cosmochimica Acta, 70(19), 4933–4949. http://dx.doi.org/10.1016/j.gca.2006.07.033
  • Zhu, Q., Cochran, J. K., Heilbrun, C., Yin, H., Feng, H., Tamborski, J. J., Fitzgerald, P., & Cong, W. (2021). Small-scale geochemical heterogeneities and seasonal variation of iron and sulfide in salt marshes revealed by two-dimensional sensors. Frontiers in Earth Science, 9, 653698. http://dx.doi.org/10.3389/feart.2021.653698
  • Zieger, S. E., Mosshammer, M., Kuhl, M., & Koren, K. (2021). Hyperspectral luminescence imaging in combination with signal deconvolution enables reliable multi-indicator-based chemical sensing. ACS Sensors, 6(1), 183–191. http://dx.doi.org/10.1021/acssensors.0c02084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.