1,345
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Syntrophy of bacteria and archaea in the anaerobic catabolism of hydrocarbon contaminants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1331-1357 | Published online: 20 Oct 2022

References

  • Aitken, C. M., Jones, D. M., Maguire, M. J., Gray, N. D., Sherry, A., Bowler, B. F. J., Ditchfield, A. K., Larter, S. R., & Head, I. M. (2013). Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochimica et Cosmochimica Acta, 109, 162–174. https://doi.org/10.1016/j.gca.2013.01.031
  • Annweiler, A., Materna, A., Safinowski, M., Kappler, A., Richnow, H. H., Michaelis, W., & Meckenstock, R. U. (2000). Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology, 66, 5329–5333. https://doi.org/10.1128/AEM.66.12.5329-5333.2000
  • Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science (New York, NY), 325(5937), 184–187. https://doi.org/10.1126/science.1169984
  • Beller, H. R., & Edwards, E. A. (2000). Anaerobic toluene activation by benzylsuccinate synthase in a highly enriched methanogenic culture. Applied and Environmental Microbiology, 66(12), 5503–5505. https://doi.org/10.1128/AEM.66.12.5503-5505.2000
  • Berdugo-Clavijo, C., Dong, X., Soh, J., Sensen, C. W., & Gieg, L. M. (2012). Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 81(1), 124–133. https://doi.org/10.1111/j.1574-6941.2012.01328.x
  • Berghuis, B. A., Yu, F. B., Schulz, F., Blainey, P. C., Woyke, T., & Quake, S. R. (2019). Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proceedings of the National Academy of Sciences, 116, 5037–5044. https://doi.org/10.1073/pnas.1815631116
  • Bian, X.-Y., Maurice Mbadinga, S., Liu, Y.-F., Yang, S.-Z., Liu, J.-F., Ye, R.-Q., Gu, J.-D., & Mu, B.-Z. (2015). Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Scientific Reports, 5, 9801. https://doi.org/10.1038/srep09801
  • Birte, M., Jennifer, K., Deutschbauer, A. M., Price, M. N., Arkin, A. P., & Stahl, D. A. (2013). Variation among desulfovibrio species in electron transfer systems used for syntrophic growth. Journal of Bacteriology, 195, 990–1004. https://doi.org/10.1128/JB.01959-12
  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623–626. https://doi.org/10.1038/35036572
  • Boone, D. R., Johnson, R. L., & Liu, Y. (1989). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Applied and Environmental Microbiology, 55(7), 1735–1741. https://doi.org/10.1128/aem.55.7.1735-1741.1989
  • Bräsen, C., & Schönheit, P. (2004). Regulation of acetate and acetyl-CoA converting enzymes during growth on acetate and/or glucose in the halophilic archaeon Haloarcula marismortui. FEMS Microbiology Letters, 241(1), 21–26. https://doi.org/10.1016/j.femsle.2004.09.033
  • Breese, K., Boll, M., Alt-Mörbe, J., Schägger, H., & Fuchs, G. (1998). Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. European Journal of Biochemistry, 256(1), 148–154. https://doi.org/10.1046/j.1432-1327.1998.2560148.x
  • Callaghan, A. V. (2013). Enzymes involved in the anaerobic oxidation of n-alkanes: From methane to long-chain paraffins. Frontiers in Microbiology, 4, 89. https://doi.org/10.3389/fmicb.2013.00089
  • Callaghan, A. V. (2013). Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Current Opinion in Biotechnology, 24(3), 506–515. https://doi.org/10.1016/j.copbio.2012.08.012
  • Callaghan, A. V., Morris, B. E. L., Pereira, I. A. C., McInerney, M. J., Austin, R. N., Groves, J. T., Kukor, J. J., Suflita, J. M., Young, L. Y., Zylstra, G. J., & Wawrik, B. (2012). The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environmental Microbiology, 14(1), 101–113. https://doi.org/10.1111/j.1462-2920.2011.02516.x
  • Carmona, M., Zamarro, M. T., Blázquez, B., Durante-Rodríguez, G., Juárez, J. F., Valderrama, J. A., Barragán, M. J. L., García, J. L., & Díaz, E. (2009). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews: MMBR, 73(1), 71–133. https://doi.org/10.1128/MMBR.00021-08
  • Chakraborty, R., & Coates, J. D. (2005). Hydroxylation and carboxylation–two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Applied and Environmental Microbiology, 71(9), 5427–5432. https://doi.org/10.1128/AEM.71.9.5427-5432.2005
  • Chang, B. V., Shiung, L. C., & Yuan, S. Y. (2002). Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 48(7), 717–724. https://doi.org/10.1016/S0045-6535(02)00151-0
  • Chang, W., Um, Y., Hoffman, B., & Holoman, T. R. P. (2005). Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnology Progress, 21(3), 682–688. https://doi.org/10.1021/bp049579l
  • Chang, W., Um, Y., & Holoman, T. R. P. (2006). Polycyclic Aromatic Hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnology Letters, 28(6), 425–430. https://doi.org/10.1007/s10529-005-6073-3
  • Christa, E.-J., Matthias, B., & Georg, F. (2003). Oxoglutarate:NADP + oxidoreductase in Azoarcus evansii: Properties and function in electron transfer reactions in aromatic ring reduction. Journal of Bacteriology, 185, 6119–6129. 2 https://doi.org/10.1128/JB.185.20.6119-6129.2003
  • Christensen, N., Batstone, D. J., He, Z., Angelidaki, I., & Schmidt, J. E. (2004). Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 50(9), 237–244. https://doi.org/10.2166/wst.2004.0580
  • Coates, J. D., Woodward, J., Allen, J., Philp, P., & Lovley, D. R. (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied and Environmental Microbiology, 63(9), 3589–3593. https://doi.org/10.1128/aem.63.9.3589-3593.1997
  • Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
  • Cord-Ruwisch, R., Seitz, H.-J., & Conrad, R. (1988). The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology, 149(4), 350–357. https://doi.org/10.1007/BF00411655
  • Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., & Aulenta, F. (2014). Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental Science & Technology, 48(13), 7536–7543. https://doi.org/10.1021/es5016789
  • Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen, 4(1), 1–11. https://doi.org/10.1002/mbo3.232
  • de Bok, F. A. M., Plugge, C. M., & Stams, A. J. M. (2004). Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research, 38(6), 1368–1375. https://doi.org/10.1016/j.watres.2003.11.028
  • Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K., & Megharaj, M. (2020). Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: A comprehensive review BT - Reviews of environmental contamination and toxicology (P. de Voogt, (Ed.), Vol. 251, pp. 25–108). Springer International Publishing. https://doi.org/10.1007/398_2019_29
  • Díaz, E. E., Stams, A. J. M., Amils, R., & Sanz, J. L. (2006). Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Applied and Environmental Microbiology, 72, 4942–4949. https://doi.org/10.1128/AEM.02985-05
  • Dolfing, J., Larter, S. R., & Head, I. M. (2008). Thermodynamic constraints on methanogenic crude oil biodegradation. The ISME Journal, 2(4), 442–452. https://doi.org/10.1038/ismej.2007.111
  • Dolfing, J., Xu, A., Gray, N. D., Larter, S. R., & Head, I. M. (2009). The thermodynamic landscape of methanogenic PAH degradation. Microbial Biotechnology, 2(5), 566–574. https://doi.org/10.1111/j.1751-7915.2009.00096.x
  • Dong, X., Greening, C., Rattray, J. E., Chakraborty, A., Chuvochina, M., Mayumi, D., Dolfing, J., Li, C., Brooks, J. M., Bernard, B. B., Groves, R. A., Lewis, I. A., & Hubert, C. R. J. (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications, 10(1), 1816. https://doi.org/10.1038/s41467-019-09747-0
  • Dong, X., Plugge, C. M., & Stams, A. J. (1994). Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Applied and Environmental Microbiology, 60(8), 2834–2838. https://doi.org/10.1128/aem.60.8.2834-2838.1994
  • Dong, X., & Stams, A. J. M. (1995). Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe, 1(1), 35–39. https://doi.org/10.1016/S1075-9964(95)80405-6
  • Duverger, A., Berg, J. S., Busigny, V., Guyot, F., Bernard, S., & Miot, J. (2020). Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.588310
  • Dyksma, S., Jansen, L., & Gallert, C. (2020). Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome, 8(1), 105. https://doi.org/10.1186/s40168-020-00862-5
  • Egland, P. G., Pelletier, D. A., Dispensa, M., Gibson, J., & Harwood, C. S. (1997). A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6484–6489. https://doi.org/10.1073/pnas.94.12.6484
  • Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., … Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548. https://doi.org/10.1038/nature08883
  • Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., & Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12792–12796. https://doi.org/10.1073/pnas.1609534113
  • Evans, P. N., Parks, D. H., Chadwick, G. L., Robbins, S. J., Orphan, V. J., Golding, S. D., & Tyson, G. W. (2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science (New York, NY), 350(6259), 434–438. https://doi.org/10.1126/science.aac7745
  • Fan, Y., Wang, J., Gao, C., Zhang, Y., & Du, W. (2020). A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Scientific Reports, 10(1), 8519. https://doi.org/10.1038/s41598-020-65432-z
  • Flemming, H.-C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews. Microbiology, 17(4), 247–260. https://doi.org/10.1038/s41579-019-0158-9
  • Fowler, S. J., Dong, X., Sensen, C. W., Suflita, J. M., & Gieg, L. M. (2012). Methanogenic toluene metabolism: community structure and intermediates. Environmental Microbiology, 14(3), 754–764. https://doi.org/10.1111/j.1462-2920.2011.02631.x
  • Fowler, S. J., Gutierrez-Zamora, M.-L., Manefield, M., & Gieg, L. M. (2014). Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiology Ecology, 89(3), 625–636. https://doi.org/10.1111/1574-6941.12364
  • Fowler, S. J., Toth, C. R. A., & Gieg, L. M. (2016). Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00562
  • Gao, P. (2021). The exposome in the era of one health. Environmental Science & Technology, 55(5), 2790–2799. https://doi.org/10.1021/acs.est.0c07033
  • Gao, P., Li, H., Wilson, C. P., Townsend, T. G., Xiang, P., Liu, Y., & Ma, L. Q. (2018). Source identification of PAHs in soils based on stable carbon isotopic signatures. Critical Reviews in Environmental Science and Technology, 48(13–15), 923–948. https://doi.org/10.1080/10643389.2018.1495983
  • Ghattas, A.-K., Fischer, F., Wick, A., & Ternes, T. A. (2017). Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Research, 116, 268–295. https://doi.org/10.1016/j.watres.2017.02.001
  • Gieg, L. M., Fowler, S. J., & Berdugo-Clavijo, C. (2014). Syntrophic biodegradation of hydrocarbon contaminants. Current Opinion in Biotechnology, 27, 21–29. https://doi.org/10.1016/j.copbio.2013.09.002
  • Gieg, L. M., & Toth, C. R. A. (2017). Signature metabolite analysis to determine. In M. Boll (Ed.), Situ anaerobic hydrocarbon biodegradation BT - anaerobic utilization of hydrocarbons, oils, and lipids (pp. 1–30). Springer International Publishing. https://doi.org/10.1007/978-3-319-33598-8_19-1
  • Gieg, L. M., & Toth, C. R. A. (2018). Anaerobic biodegradation of hydrocarbons: Metagenomics and metabolomics BT - Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation (R. Steffan (Ed.), pp. 1–42). Springer International Publishing. https://doi.org/10.1007/978-3-319-44535-9_16-1
  • Girguis, P. R., Cozen, A. E., & DeLong, E. F. (2005). Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Applied and Environmental Microbiology, 71(7), 3725–3733. https://doi.org/10.1128/AEM.71.7.3725-3733.2005
  • Glodowska, M., Stopelli, E., Schneider, M., Rathi, B., Straub, D., Lightfoot, A., Kipfer, R., Berg, M., Jetten, M., Kleindienst, S., Kappler, A., AdvectAs Team Members. (2020). Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 1(1), 42. https://doi.org/10.1038/s43247-020-00037-y
  • Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., & Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567–570. https://doi.org/10.1038/nature12375
  • Harwood, C. S., Burchhardt, G., Herrmann, H., & Fuchs, G. (1998). Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 22(5), 439–458. https://doi.org/10.1111/j.1574-6976.1998.tb00380.x
  • Hattori, S. (2008). Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes and Environments, 23(2), 118–127. https://doi.org/10.1264/jsme2.23.118
  • Hatzenpichler, R., Connon, S. A., Goudeau, D., Malmstrom, R. R., Woyke, T., & Orphan, V. J. (2016). Visualizing in situ translational activity for identifying and sorting slow-growing archaeal − bacterial consortia. Proceedings of the National Academy of Sciences, 113, E4069–E4078. https://doi.org/10.1073/pnas.1603757113
  • He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., & Gadd, G. M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Science of the Total Environment, 610–611, 759–768. https://doi.org/10.1016/j.scitotenv.2017.08.140
  • Heider, J. (2007). Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Current Opinion in Chemical Biology, 11(2), 188–194. https://doi.org/10.1016/j.cbpa.2007.02.027
  • Heider, J., Spormann, A. M., Beller, H. R., & Widdel, F. (1998). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiology Reviews, 22(5), 459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
  • Ishii, S., Kosaka, T., Hotta, Y., & Watanabe, K. (2006). Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Applied and Environmental Microbiology, 72(7), 5093–5096. https://doi.org/10.1128/AEM.00333-06
  • Jackson, B. E., & McInerney, M. J. (2002). Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature, 415(6870), 454–456. https://doi.org/10.1038/415454a
  • Jennings, E., & Tanner, R. ( 2004). The effects of a bacillus biosurfactant on methanogenic hexadecane degradation. Bioremediation Journal, 8(1–2), 79–86. https://doi.org/10.1080/10889860490453195
  • Ji, J.-H., Liu, Y.-F., Zhou, L., Mbadinga, M. S., Pan, P., Chen, J., Liu, J.-F., Yang, S.-Z., Sand, W., Gu, J.-D., & Mu, B.-Z. (2019). Methanogenic degradation of long n-alkanes requires fumarate-dependent activation. Applied and Environmental Microbiology, 85(16), e00985–19. https://doi.org/10.1128/AEM.00985-19
  • Jiménez, N., Richnow, H. H., Vogt, C., Treude, T., & Krüger, M. ( 2016). Methanogenic hydrocarbon degradation: Evidence from field and laboratory studies. Journal of Molecular Microbiology and Biotechnology, 26(1–3), 227–242. https://doi.org/10.1159/000441679
  • Johnson, J. A., Lu, Y. Y., Van Deventer, J. A., & Tirrell, D. A. ( 2010). Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Current Opinion in Chemical Biology, 14(6), 774–780. https://doi.org/10.1016/j.cbpa.2010.09.013
  • Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., Bennett, B., Huang, H., Brown, A., Bowler, B. F. J., Oldenburg, T., Erdmann, M., & Larter, S. R. ( 2008). Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451(7175), 176–180. https://doi.org/10.1038/nature06484
  • Joseph, C., Campbell, K. A., Torres, M. E., Martin, R. A., Pohlman, J. W., Riedel, M., & Rose, K. (2013). Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390, 52–67. https://doi.org/10.1016/j.palaeo.2013.01.012
  • Jutta, K., A., Pombo, S. A., Schroth, M. H., Sigler, W. V., Pesaro, M., Pesaro, M., & Zeyer, J. (2005). Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Applied and Environmental Microbiology, 71, 149–158. https://doi.org/10.1128/AEM.71.1.149-158.2005
  • Kirk, P. W. W., & Lester, J. N. (1991). The fate of polycyclic aromatic hydrocarbons during sewage sludge digestion. Environmental Technology, 12(1), 13–20. https://doi.org/10.1080/09593339109384977
  • Kleinsteuber, S. (2018). Metagenomics of methanogenic communities in anaerobic digesters BT - Biogenesis of hydrocarbons (A. J. M. Stams & D. Sousa (Eds.), pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-319-53114-4_16-1
  • Kleinsteuber, S., Schleinitz, K. M., & Vogt, C. (2012). Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Applied Microbiology and Biotechnology, 94(4), 851–873. https://doi.org/10.1007/s00253-012-4025-0
  • Knab, N. J., Dale, A. W., Lettmann, K., Fossing, H., & Jørgensen, B. B. (2008). Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochimica et Cosmochimica Acta, 72(15), 3746–3757. https://doi.org/10.1016/j.gca.2008.05.039
  • Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 63, 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
  • Kunapuli, U., Lueders, T., & Meckenstock, R. U. (2007). The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. The ISME Journal, 1(7), 643–653. https://doi.org/10.1038/ismej.2007.73
  • Lee, H.-S., Tang, Y., Rittmann, B. E., & Zhao, H.-P. (2018). Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Critical Reviews in Environmental Science and Technology, 48(19–21), 1067–1093. https://doi.org/10.1080/10643389.2018.1503927
  • Leu, A. O., Cai, C., McIlroy, S. J., Southam, G., Orphan, V. J., Yuan, Z., Hu, S., & Tyson, G. W. (2020). Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. The ISME Journal, 14(4), 1030–1041. https://doi.org/10.1038/s41396-020-0590-x
  • Li, J.-Y., Wang, L., Liu, Y.-F., Zhou, L., Gang, H.-Z., Liu, J.-F., Yang, S.-Z., & Mu, B.-Z. (2021). Microbial lipopeptide-producing strains and their metabolic roles under anaerobic conditions. Microorganisms, 9(10), 2030. https://doi.org/10.3390/microorganisms9102030
  • Liang, L., Wang, Y., Sivan, O., & Wang, F. (2019). Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Science China. Life Sciences, 62(10), 1287–1295. https://doi.org/10.1007/s11427-018-9554-5
  • Lie, T. J., Costa, K. C., Lupa, B., Korpole, S., Whitman, W. B., & Leigh, J. A. (2012). Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15473–15478. https://doi.org/10.1073/pnas.1208779109
  • López-García, P., & Moreira, D. (2020). The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 5(5), 655–667. https://doi.org/10.1038/s41564-020-0710-4
  • Losey, N. A., Mus, F., Peters, J. W., Le, H. M., & McInerney, M. J. (2017). Syntrophomonas wolfei uses an NADH-dependent, ferredoxin-independent [FeFe]-hydrogenase to reoxidize NADH. Applied and Environmental Microbiology, 83(20), e01335-17. https://doi.org/10.1128/AEM.01335-17
  • Main, C. E., Ruhl, H. A., Jones, D. O. B., Yool, A., Thornton, B., & Mayor, D. J. (2015). Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition. Deep Sea Research Part I: Oceanographic Research Papers, 100, 79–87. https://doi.org/10.1016/j.dsr.2014.12.008
  • Mand, T. D., & Metcalf, W. W. (2019). Energy conservation and hydrogenase function in methanogenic archaea. Microbiology and Molecular Biology Reviews, 83(4), e00020-19. https://doi.org/10.1128/MMBR.00020-19
  • Mansor, M., & Xu, J. ( 2020). Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality. Environmental Microbiology, 22(9), 3633–3649. https://doi.org/10.1111/1462-2920.15174
  • Marozava, S., Mouttaki, H., Müller, H., Laban, N. A., Probst, A. J., & Meckenstock, R. U. (2018). Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation, 29(1), 23–39. https://doi.org/10.1007/s10532-017-9811-z
  • Martin, W., & Müller, M. (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392(6671), 37–41. https://doi.org/10.1038/32096
  • Masumoto, H., Kurisu, F., Kasuga, I., Tourlousse, D. M., & Furumai, H. (2012). Complete mineralization of benzene by a methanogenic enrichment culture and effect of putative metabolites on the degradation. Chemosphere, 86(8), 822–828. https://doi.org/10.1016/j.chemosphere.2011.11.051
  • McDowall, J. S., Murphy, B. J., Haumann, M., Palmer, T., Armstrong, F. A., & Sargent, F. (2014). Bacterial formate hydrogenlyase complex. Proceedings of the National Academy of Sciences of the United States of America, 111(38), E3948–E3956. https://doi.org/10.1073/pnas.1407927111
  • McInerney, M. J., Rohlin, L., Mouttaki, H., Kim, U., Krupp,R. S., Luis, R.-H., Sieber, J., Struchtemeyer, C. G., Bhattacharyya, A., Campbell, J. W., & Gunsalus, R. P. (2007). The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth. Proceedings of the National Academy of Sciences of the United States of America, 104(18), 7600–7605. https://doi.org/10.1073/pnas.0610456104
  • McInerney, M. J., Sieber, J. R., & Gunsalus, R. P. (2009). Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology, 20(6), 623–632. https://doi.org/10.1016/j.copbio.2009.10.001
  • Meckenstock, R. U., & Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in Biotechnology, 22(3), 406–414. https://doi.org/10.1016/j.copbio.2011.02.009
  • Mouttaki, H., Johannes, J., & Meckenstock, R. U. (2012). Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environmental Microbiology, 14(10), 2770–2774. https://doi.org/10.1111/j.1462-2920.2012.02768.x
  • Müller, N., Worm, P., Schink, B., Stams, A. J. M., & Plugge, C. M. (2010). Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environmental Microbiology Reports, 2(4), 489–499. https://doi.org/10.1111/j.1758-2229.2010.00147.x
  • Muroski, J., M., Fu, J. Y., Nguyen, H. H., Wofford, N. Q., Mouttaki, H., James, K. L., McInerney, M. J., Gunsalus, R. P., Loo, J. A., & Ogorzalek Loo, R. R. (2022). The acyl-proteome of syntrophus aciditrophicus reveals metabolic relationships in benzoate degradation. Molecular & Cellular Proteomics: MCP, 21(4), 100215. https://doi.org/10.1016/j.mcpro.2022.100215
  • Murray, A. E., Freudenstein, J., Gribaldo, S., Hatzenpichler, R., Hugenholtz, P., Kämpfer, P., Konstantinidis, K. T., Lane, C. E., Papke, R. T., Parks, D. H., Rossello-Mora, R., Stott, M. B., Sutcliffe, I. C., Thrash, J. C., Venter, S. N., Whitman, W. B., Acinas, S. G., Amann, R. I., Anantharaman, K., … Reysenbach, A.-L. ( 2020). Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 5(8), 987–994. https://doi.org/10.1038/s41564-020-0733-x
  • Musat, N., Foster, R., Vagner, T., Adam, B., Kuypers, M., & M., M. ( 2012). Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiology Reviews, 36(2), 486–511. https://doi.org/10.1111/j.1574-6976.2011.00303.x
  • Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., & Widdel, F. ( 2007). In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environmental Microbiology, 9(1), 187–196. https://doi.org/10.1111/j.1462-2920.2006.01127.x
  • Nauhaus, K., Treude, T., Boetius, A., & Krüger, M. ( 2005). Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology, 7(1), 98–106. https://doi.org/10.1111/j.1462-2920.2004.00669.x
  • Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P., & Boetius, A. ( 2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443(7113), 854–858. https://doi.org/10.1038/nature05227
  • Orcutt, B., Samarkin, V., Boetius, A., & Joye, S. ( 2008). On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environmental Microbiology, 10(5), 1108–1117. https://doi.org/10.1111/j.1462-2920.2007.01526.x
  • Pienkowska, A., Glodowska, M., Mansor, M., Buchner, D., Straub, D., Kleindienst, S., & Kappler, A. (2021). Isotopic labeling reveals microbial methane oxidation coupled to Fe(III) mineral reduction in sediments from an As-contaminated aquifer. Environmental Science & Technology Letters, 8(9), 832–837. https://doi.org/10.1021/acs.estlett.1c00553
  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., & Strous, M. ( 2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617
  • Reeburgh, W. S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 28(3), 337–344. https://doi.org/10.1016/0012-821X(76)90195-3
  • Reeburgh, W. S. (2007). Oceanic methane biogeochemistry. Chemical Reviews, 107(2), 486–513. https://doi.org/10.1021/cr050362v
  • Rossmassler, K., Snow, C. D., Taggart, D., Brown, C., & De Long, S. K. (2019). Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium. Applied Microbiology and Biotechnology, 103(10), 4177–4192. https://doi.org/10.1007/s00253-019-09762-7
  • Rotaru, A. E., Posth, N. R., Löscher, C. R., Miracle, M. R., Vicente, E., Cox, R. P., & Thompson, J. (2019). Interspecies interactions mediated by conductive minerals in the sediments of the Iron rich Meromictic Lake La Cruz, Spain. Limnetica, 38(1), 21–40. https://doi.org/10.23818/limn.38.10
  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Ueki, T., Nevin, K., Summers, Z. M., & Lovley, D. R. (2012). Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Applied and Environmental Microbiology, 78(21), 7645–7651. https://doi.org/10.1128/AEM.01946-12
  • Safinowski, M., Griebler, C., & Meckenstock, R. U. (2006). Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: Evidence from laboratory and field studies. Environmental Science & Technology, 40(13), 4165–4173. https://doi.org/10.1021/es0525410
  • Safinowski, M., & Meckenstock, R. U. (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environmental Microbiology, 8(2), 347–352. https://doi.org/10.1111/j.1462-2920.2005.00900.x
  • Sakai, N., Kurisu, F., Yagi, O., Nakajima, F., & Yamamoto, K. (2009). Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. Journal of Bioscience and Bioengineering, 108(6), 501–507. https://doi.org/10.1016/j.jbiosc.2009.06.005
  • Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K., & Jaun, B. (2010). The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 465(7298), 606–608. https://doi.org/10.1038/nature09015
  • Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E., & Orphan, V. J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science (New York, NY), 351(6274), 703–707. https://doi.org/10.1126/science.aad7154
  • Schink, B., & Thauer, R. K. (1988). Granular anaerobic sludge: Microbiology and technology. In G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, & L. W. Hulshoff (Eds.), Nature reviews microbiology (pp. 5–17). Wageningen, The Netherlands: Pudoc.
  • Schmidt, J. E., & Ahring, B. K. (1993). Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Applied and Environmental Microbiology, 59(8), 2546–2551. https://doi.org/10.1128/aem.59.8.2546-2551.1993
  • Schultz, D., Zühlke, D., Bernhardt, J., Francis, T., Ben, Albrecht, D., Hirschfeld, C., Markert, S., & Riedel, K. (2020). An optimized metaproteomics protocol for a holistic taxonomic and functional characterization of microbial communities from marine particles. Environmental Microbiology Reports, 12(4), 367–376. https://doi.org/10.1111/1758-2229.12842
  • Schweitzer, H. D., Smith, H. J., Barnhart, E. P., McKay, L. J., Gerlach, R., Cunningham, A. B., Malmstrom, R. R., Goudeau, D., & Fields, M. W. (2022). Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics. NPJ Biofilms and Microbiomes, 8(1), 7. https://doi.org/10.1038/s41522-022-00267-2
  • Sebastián, M., & Gasol, J. M. (2019). Visualization is crucial for understanding microbial processes in the ocean. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1786), 20190083. https://doi.org/10.1098/rstb.2019.0083
  • Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K.-U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6, 7477. https://doi.org/10.1038/ncomms8477
  • Shinoda, Y., Akagi, J., Uchihashi, Y., Hiraishi, A., Yukawa, H., Yurimoto, H., Sakai, Y., & Kato, N. (2005). Anaerobic degradation of aromatic compounds by magnetospirillum strains: Isolation and degradation genes. Bioscience, Biotechnology, and Biochemistry, 69(8), 1483–1491. https://doi.org/10.1271/bbb.69.1483
  • Shun’ichi, I., Tomoyuki, K., Katsutoshi, H., Yasuaki, H., & Kazuya, W. (2005). Coaggregation Facilitates Interspecies Hydrogen Transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Applied and Environmental Microbiology, 71, 7838–7845. https://doi.org/10.1128/AEM.71.12.7838-7845.2005
  • Sieber, J. R., Le, H. M., & McInerney, M. J. (2014). The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environmental Microbiology, 16(1), 177–188. https://doi.org/10.1111/1462-2920.12269
  • Sieber, J. R., McInerney, M. J., & Gunsalus, R. P. (2012). Genomic insights into syntrophy: The paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology, 66, 429–452. https://doi.org/10.1146/annurev-micro-090110-102844
  • Silber, P., Borie, R. P., Mikowski, E. J., & Goldfine, H. (1981). Phospholipid biosynthesis in some anaerobic bacteria. Journal of Bacteriology, 147(1), 57–61. https://doi.org/10.1128/jb.147.1.57-61.1981
  • Sintes, E., & Herndl, G. J. (2006). Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Applied and Environmental Microbiology, 72(11), 7022–7028. https://doi.org/10.1128/AEM.00763-06
  • Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews. Microbiology, 7(8), 568–577. https://doi.org/10.1038/nrmicro2166
  • Strobel, E. J., Yu, A. M., & Lucks, J. B. ( 2018). High-throughput determination of RNA structures. Nature Reviews. Genetics, 19(10), 615–634. https://doi.org/10.1038/s41576-018-0034-x
  • Su, C., Lei, L., Duan, Y., Zhang, K.-Q., & Yang, J. ( 2012). Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology, 93(3), 993–1003. https://doi.org/10.1007/s00253-011-3800-7
  • Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science (New York, NY), 330(6009), 1413–1415. https://doi.org/10.1126/science.1196526
  • Tahhan, R. A. A., Sandrin, T. R., Bodour, A. A., & Maier, R. M. (2000). Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environmental Microbiology, 66, 3262–3268. https://doi.org/10.1128/AEM.66.8.3262-3268.2000
  • Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100–180. https://doi.org/10.1128/br.41.1.100-180.1977
  • Thauer, R. K., Kaster, A.-K., Goenrich, M., Schick, M., Hiromoto, T., & Shima, S. (2010). Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annual Review of Biochemistry, 79, 507–536. https://doi.org/10.1146/annurev.biochem.030508.
  • Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews. Microbiology, 6(8), 579–591. https://doi.org/10.1038/nrmicro1931
  • Thiele, J. H., & Zeikus, G. J. (1988). Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Applied and Environmental Microbiology, 54(1), 20–29. https://doi.org/10.1128/aem.54.1.20-29.1988
  • Tiedje, J. M., Bruns, M. A., Casadevall, A., Criddle, C. S., Eloe-Fadrosh, E., Karl, D. M., Nguyen, N. K., & Zhou, J. (2022). Microbes and climate change: a research prospectus for the future. mBio, 13(3), e00800-22. https://doi.org/10.1128/mbio.00800-22
  • Toth, C. R. A., & Gieg, L. M. (2017). Time course-dependent methanogenic crude oil biodegradation: Dynamics of fumarate addition metabolites, biodegradative genes, and microbial community composition. Frontiers in Microbiology, 8, 2610. https://doi.org/10.3389/fmicb.2017.02610
  • Trably, E., Patureau, D., & Delgenes, J. P. (2003). Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 48(4), 53–60. https://doi.org/10.2166/wst.2003.0220
  • Ulrich, A. C., Beller, H. R., & Edwards, E. A. (2005). Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environmental Science & Technology, 39(17), 6681–6691. https://doi.org/10.1021/es050294u
  • Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B. J., Hugenholtz, P., & Tyson, G. W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology, 1, 16170. https://doi.org/10.1038/nmicrobiol.2016.170
  • Vanwonterghem, I., Jensen, P. D., Ho, D. P., Batstone, D. J., & Tyson, G. W. (2014). Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Current Opinion in Biotechnology, 27, 55–64. https://doi.org/10.1016/j.copbio.2013.11.004
  • Wang, Y., Huang, W. E., Cui, L., & Wagner, M. (2016). Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology, 41, 34–42. https://doi.org/10.1016/j.copbio.2016.04.018
  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10), 752–764. https://doi.org/10.1038/nrmicro1490
  • Yan, Z., Zhang, Y., Wu, H., Yang, M., Zhang, H., Hao, Z., & Jiang, H. (2017). Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Advances, 7(74), 46690–46698. https://doi.org/10.1039/C7RA09274A
  • Zedelius, J., Rabus, R., Grundmann, O., Werner, I., Brodkorb, D., Schreiber, F., Ehrenreich, P., Behrends, A., Wilkes, H., Kube, M., Reinhardt, R., & Widdel, F. (2011). Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environmental Microbiology Reports, 3(1), 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x
  • Zengler, K., Richnow, H. H., Rosselló-Mora, R., Michaelis, W., & Widdel, F. (1999). Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 401(6750), 266–269. https://doi.org/10.1038/45777
  • Zhao, F., Wang, Q., Zhang, Y., & Lei, L. (2021). Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Microbial Cell Factories, 20(1), 103. https://doi.org/10.1186/s12934-021-01593-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.