1,298
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

Electrochemical phosphorus release and recovery from wastewater sludge: A review

, &
Pages 1359-1377 | Published online: 06 Feb 2023

References

  • Almeida, J., Magro, C., Mateus, E. P., & Ribeiro, A. B. (2020). Electrodialytic hydrogen production and critical raw materials recovery from secondary resources. Water, 12(5), 1262. https://doi.org/10.3390/w12051262
  • Blatter, M., Furrer, C., Cachelin, C. P., & Fischer, F. (2020). Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations. Chemical Engineering Journal, 390, 124502. https://doi.org/10.1016/j.cej.2020.124502
  • Blatter, M., Vermeille, M., Furrer, C., Pouget, G., & Fischer, F. (2019). Mechanisms and model process parameters in bioelectrochemical wet phosphate recovery from iron phosphate sewage sludge. ACS Sustainable Chemistry & Engineering, 7(6), 5856–5866. https://doi.org/10.1021/acssuschemeng.8b05781
  • Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2019). Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248, 109268. https://doi.org/10.1016/j.jenvman.2019.109268
  • Cieślik, B. M., Namieśnik, J., & Konieczka, P. (2015). Review of sewage sludge management: Standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031
  • Cordell, D., & White, S. (2014). Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future. Annual Review of Environment and Resources, 39(1), 161–188. https://doi.org/10.1146/annurev-environ-010213-113300
  • Du, J. X., Biesheuvel, P. M., Tang, W. W., & Waite, T. D. (2023). Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. Journal of Hazardous Materials, 442, 130023. https://doi.org/10.1016/j.jhazmat.2022.130023
  • Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015a). Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash. Chemosphere, 125, 122–129. https://doi.org/10.1016/j.chemosphere.2014.12.013
  • Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015b). Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochimica Acta, 181, 90–99. https://doi.org/10.1016/j.electacta.2015.04.097
  • Fischer, F., Bastian, C., Happe, M., Mabillard, E., & Schmidt, N. (2011). Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology, 102(10), 5824–5830. https://doi.org/10.1016/j.biortech.2011.02.089
  • Fischer, F., Zufferey, G., Sugnaux, M., & Happe, M. (2015). Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge. Environmental Science. Processes & Impacts, 17(1), 90–97. https://doi.org/10.1039/c4em00536h
  • Gonzalez-Garcia, I., Oliveira, V., Molinuevo-Salces, B., Garcia-Gonzalez, M. C., Dias-Ferreira, C., & Riano, B. (2022). Two-phase nutrient recovery from livestock wastewaters combining novel membrane technologies. Biomass Conversion and Biorefinery, 12(10), 4563–4574. https://doi.org/10.1007/s13399-022-02546-6
  • Guedes, P., Couto, N., Ottosen, L. M., & Ribeiro, A. B. (2014). Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management (New York, N.Y.), 34(5), 886–892. https://doi.org/10.1016/j.wasman.2014.02.021
  • Guedes, P., Magro, C., Couto, N., Mosca, A., Mateus, E. P., & Ribeiro, A. B. (2015). Potential of the electrodialytic process for emerging organic contaminants remediation and phosphorus separation from sewage sludge. Electrochimica Acta, 181, 109–117. https://doi.org/10.1016/j.electacta.2015.03.167
  • Guedes, P., Mateus, E. P., Almeida, J., Ferreira, A. R., Couto, N., & Ribeiro, A. B. (2016). Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 306, 1058–1066. https://doi.org/10.1016/j.cej.2016.08.040
  • Happe, M., Sugnaux, M., Cachelin, C. P., Stauffer, M., Zufferey, G., Kahoun, T., Salamin, P.-A., Egli, T., Comninellis, C., Grogg, A.-F., & Fischer, F. (2016). Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell. Bioresource Technology, 200, 435–443. https://doi.org/10.1016/j.biortech.2015.10.057
  • Ibeid, S., Elektorowicz, M., & Oleszkiewicz, J. A. (2013). Modification of activated sludge properties caused by application of continuous and intermittent current. Water Research, 47(2), 903–910. https://doi.org/10.1016/j.watres.2012.11.020
  • Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling – closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/d0cs01150a
  • Kelly, P. T., & He, Z. (2014). Nutrients removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 153, 351–360. https://doi.org/10.1016/j.biortech.2013.12.046
  • Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. https://doi.org/10.1016/j.jece.2021.105579
  • Lei, Y., Remmers, J. C., Saakes, M., van der Weijden, R. D., & Buisman, C. J. N. (2019). Influence of cell configuration and long-term operation on electrochemical phosphorus recovery from domestic wastewater. ACS Sustainable Chemistry & Engineering, 7(7), 7362–7368. https://doi.org/10.1021/acssuschemeng.9b00563
  • Lei, Y., Saakes, M., van der Weijden, R. D., & Buisman, C. J. N. (2020). Electrochemically mediated calcium phosphate precipitation from phosphonates: Implications on phosphorus recovery from non-orthophosphate. Water Research, 169, 115206. https://doi.org/10.1016/j.watres.2019.115206
  • Li, X., Shen, S., Xu, Y., Guo, T., Dai, H., & Lu, X. (2021). Application of membrane separation processes in phosphorus recovery: A review. The Science of the Total Environment, 767, 144346. https://doi.org/10.1016/j.scitotenv.2020.144346
  • Lin, L., Tam, L-h., Xia, X., & Li, X-y (2019). Electro-fermentation of iron-enhanced primary sedimentation sludge in a two-chamber bioreactor for product separation and resource recovery. Water Research, 157, 145–154. https://doi.org/10.1016/j.watres.2019.03.075
  • Liu, J., Deng, S., Qiu, B., Shang, Y., Tian, J., Bashir, A., & Cheng, X. (2019). Comparison of pretreatment methods for phosphorus release from waste activated sludge. Chemical Engineering Journal, 368, 754–763. https://doi.org/10.1016/j.cej.2019.02.205
  • Mahmoud, A., Olivier, J., Vaxelaire, J., & Hoadley, A. F. A. (2010). Electrical field: A historical review of its application and contributions in wastewater sludge dewatering. Water Research, 44(8), 2381–2407. https://doi.org/10.1016/j.watres.2010.01.033
  • Mallick, S. P., Ryan, D. R., Venkiteshwaran, K., McNamara, P. J., & Mayer, B. K. (2021). Electro-oxidation to convert dissolved organic nitrogen and soluble non-reactive phosphorus to more readily removable and recoverable forms. Chemosphere, 279, 130876. https://doi.org/10.1016/j.chemosphere.2021.130876
  • Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67–74. https://doi.org/10.1016/j.cej.2007.10.023
  • Mayer, B. K., Baker, L. A., Boyer, T. H., Drechsel, P., Gifford, M., Hanjra, M. A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., & Rittmann, B. E. (2016). Total value of phosphorus recovery. Environmental Science & Technology, 50(13), 6606–6620. https://doi.org/10.1021/acs.est.6b01239
  • Merino-Garcia, I., & Velizarov, S. (2021). New insights into the definition of membrane cleaning strategies to diminish the fouling impact in ion exchange membrane separation processes. Separation and Purification Technology, 277, 119445. https://doi.org/10.1016/j.seppur.2021.119445
  • Mohammadi, R., Tang, W., & Sillanpaa, M. (2021). A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination, 498, 114626. https://doi.org/10.1016/j.desal.2020.114626
  • Monetti, J., Ledezma, P., & Freguia, S. (2021). Optimised operational parameters for improved nutrient recovery from hydrolysed urine by bio-electroconcentration. Separation and Purification Technology, 279, 119793. https://doi.org/10.1016/j.seppur.2021.119793
  • Morris, J. C. (2019). Violence and extraction of a human commodity: From phosphate to refugees in the Republic of Nauru. The Extractive Industries and Society, 6(4), 1122–1133. https://doi.org/10.1016/j.exis.2019.07.001
  • Naresh Kumar, A., Bandarapu, A. K., & Venkata Mohan, S. (2019). Microbial electro-hydrolysis of sewage sludge for acidogenic production of biohydrogen and volatile fatty acids along with struvite. Chemical Engineering Journal, 374, 1264–1274. https://doi.org/10.1016/j.cej.2019.05.199
  • Nättorp, A., Kabbe, C., Matsubae, K., & Ohtake, H. (2019). Development of phosphorus recycling in Europe and Japan. In Phosphorus recovery and recycling. Springer.
  • Oliveira, V., Dias‐Ferreira, C., Labrincha, J., Rocha, J. L., & Kirkelund, G. M. (2019a). Testing new strategies to improve the recovery of phosphorus from anaerobically digested organic fraction of municipal solid waste. Journal of Chemical Technology & Biotechnology, 95(2), 439–449. https://doi.org/10.1002/jctb.6037
  • Oliveira, V., Kirkelund, G. M., Horta, C., Labrincha, J., & Dias-Ferreira, C. (2019b). Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies. Applied Energy, 247, 182–189. https://doi.org/10.1016/j.apenergy.2019.03.175
  • Oliveira, V., Labrincha., G. M. K. J., & Dias-Ferreira, C. (2020). Struvite quality assessment during electrodialytic extraction. In C. Vilarinho, F. Castro, M. Gonçalves, and A. L. Fernando (Eds.), Wastes: Solutions, treatments and opportunities III (pp. 236–242). CRC Press.
  • Ottosen, L. M., Jensen, P. E., & Kirkelund, G. M. (2016). Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell. Waste Management (New York, N.Y.), 51, 142–148. https://doi.org/10.1016/j.wasman.2016.02.015
  • Parés Viader, R., Jensen, P. E., Ottosen, L. M., Ahrenfeldt, J., & Hauggaard-Nielsen, H. (2017a). Sequential electrodialytic recovery of phosphorus from low-temperature gasification ashes of chemically precipitated sewage sludge. Waste Management (New York, N.Y.), 60, 211–218. https://doi.org/10.1016/j.wasman.2016.11.030
  • Parés Viader, R., Jensen, P. E., Ottosen, L. M., Ahrenfeldt, J., & Hauggaard-Nielsen, H. (2015). Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge. Electrochimica Acta, 181, 100–108. https://doi.org/10.1016/j.electacta.2015.05.025
  • Parés Viader, R., Jensen, P. E., Ottosen, L. M., Thomsen, T. P., Ahrenfeldt, J., & Hauggaard-Nielsen, H. (2017b). Comparison of phosphorus recovery from incineration and gasification sewage sludge ash. Water science and Technology, 75(5–6), 1251–1260. https://doi.org/10.2166/wst.2016.620
  • Perera, M. K., & Englehardt, J. D. (2020). Simultaneous nitrogen and phosphorus recovery from municipal wastewater by electrochemical pH modulation. Separation and Purification Technology, 250, 117166. https://doi.org/10.1016/j.seppur.2020.117166
  • Perera, M. K., Englehardt, J. D., & Dvorak, A. C. (2019). Technologies for recovering nutrients from wastewater: A critical review. Environmental Engineering Science, 36(5), 511–529. https://doi.org/10.1089/ees.2018.0436
  • Qiang, Z., Wang, L., Dong, H., & Qu, J. (2015). Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: A pilot-scale study. Chemical Engineering Journal, 268, 162–169. https://doi.org/10.1016/j.cej.2015.01.054
  • Quist-Jensen, C. A., Wybrandt, L., Løkkegaard, H., Antonsen, S. B., Jensen, H. C., Nielsen, A. H., & Christensen, M. L. (2018). Acidification and recovery of phosphorus from digested and non-digested sludge. Water Research, 146, 307–317. https://doi.org/10.1016/j.watres.2018.09.035
  • Ren, Y., Zheng, W., Duan, X., Goswami, N., & Liu, Y. (2022). Recent advances in electrochemical removal and recovery of phosphorus from water: A review. Environmental Functional Materials, 1(1), 10–20. https://doi.org/10.1016/j.efmat.2022.04.003
  • Saktaywin, W., Tsuno, H., Nagare, H., Soyama, T., & Weerapakkaroon, J. (2005). Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Research, 39(5), 902–910. https://doi.org/10.1016/j.watres.2004.11.035
  • Semerci, N., Kunt, B., & Calli, B. (2019). Phosphorus recovery from sewage sludge ash with bioleaching and electrodialysis. International Biodeterioration & Biodegradation, 144, 104739. https://doi.org/10.1016/j.ibiod.2019.104739
  • Shi, L., Hu, Y., Xie, S., Wu, G., Hu, Z., & Zhan, X. (2018). Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis. Chemical Engineering Journal, 334, 134–142. https://doi.org/10.1016/j.cej.2017.10.010
  • Shi, L., Xie, S., Hu, Z., Wu, G., Morrison, L., Croot, P., Hu, H., & Zhan, X. (2019). Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. Journal of Membrane Science, 573, 560–569. https://doi.org/10.1016/j.memsci.2018.12.037
  • Strazzabosco, A., Kenway, S. J., & Lant, P. A. (2019). Solar PV adoption in wastewater treatment plants: A review of practice in California. Journal of Environmental Management, 248, 109337. https://doi.org/10.1016/j.jenvman.2019.109337
  • Sturm, G., Weigand, H., Marb, C., Weiß, W., & Huwe, B. (2010). Electrokinetic phosphorus recovery from packed beds of sewage sludge ash: yield and energy demand. Journal of Applied Electrochemistry, 40(6), 1069–1078. https://doi.org/10.1007/s10800-009-0061-6
  • Sun, D., Bian, Y., Liu, P., Wang, H., Xu, T., Zhang, X., Liang, P., Ren, Z. J., Chen, X., & Huang, X. (2021). Electricity enhances biological Fe(III) reduction and phosphorus recovery from FEP complex: Proof of concept and kinetic analysis. ACS ES&T Engineering, 1(3), 523–532. https://doi.org/10.1021/acsestengg.0c00211
  • Takabe, Y., Ota, N., Fujiyama, M., Okayasu, Y., Yamasaki, Y., & Minamiyama, M. (2020). Utilisation of polarity inversion for phosphorus recovery in electrochemical precipitation with anaerobic digestion effluent. The Science of the Total Environment, 706, 136090. https://doi.org/10.1016/j.scitotenv.2019.136090
  • Tigini, V., Franchino, M., Bona, F., & Varese, G. C. (2016). Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. The Science of the Total Environment, 551-552, 127–132. https://doi.org/10.1016/j.scitotenv.2016.02.004
  • Tuszynska, A., Czerwionka, K., & Obarska-Pempkowiak, H. (2021). Phosphorus concentration and availability in raw organic waste and post fermentation products. Journal of Environmental Management, 278(Pt 2), 111468. https://doi.org/10.1016/j.jenvman.2020.111468
  • van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. The Science of the Total Environment, 542(Pt B), 1078–1093. https://doi.org/10.1016/j.scitotenv.2015.08.048
  • Venkiteshwaran, K., McNamara, P. J., & Mayer, B. K. (2018). Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. The Science of the Total Environment, 644, 661–674. https://doi.org/10.1016/j.scitotenv.2018.06.369
  • Wang, Z., & He, Z. (2022). Electrochemical phosphorus leaching from digested anaerobic sludge and subsequent nutrient recovery. Water Research, 223, 118996. https://doi.org/10.1016/j.watres.2022.118996
  • Wang, Y. C., Kuntke, P., Saakes, M., van der Weijden, R. D., Buisman, C. J. N., & Lei, Y. (2022). Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. Water Research, 209, 117891. https://doi.org/10.1016/j.watres.2021.117891
  • Wang, X., Qiu, Z., Lu, S., & Ying, W. (2010). Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge. Journal of Hazardous Materials, 176(1–3), 35–40. https://doi.org/10.1016/j.jhazmat.2009.10.115
  • Wang, X., Wang, Y., Zhang, X., Feng, H., Li, C., & Xu, T. (2013). Phosphate recovery from excess sludge by conventional electrodialysis (CED) and electrodialysis with bipolar membranes (EDBM). Industrial & Engineering Chemistry Research, 52(45), 15896–15904. https://doi.org/10.1021/ie4014088
  • Wilfert, P., Kumar, P. S., Korving, L., Witkamp, G. J., & van Loosdrecht, M. C. M. (2015). The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: A review. Environmental Science & Technology, 49(16), 9400–9414. https://doi.org/10.1021/acs.est.5b00150
  • Wu, Y., Luo, J., Zhang, Q., Aleem, M., Fang, F., Xue, Z., & Cao, J. (2019). Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. Chemosphere, 226, 246–258. https://doi.org/10.1016/j.chemosphere.2019.03.138
  • Xia, Q., Guo, H., Ye, Y., Yu, S., Li, L., Li, Q., & Zhang, R. (2018). Study on the fouling mechanism and cleaning method in the treatment of polymer flooding produced water with ion exchange membranes. RSC Advances, 8(52), 29947–29957. https://doi.org/10.1039/c8ra05575k
  • Xue, T., & Huang, X. (2007). Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge. Journal of Environmental Sciences, 19(10), 1153–1158. https://doi.org/10.1016/S1001-0742(07)60188-0
  • Xu, Y., Hu, H., Liu, J., Luo, J., Qian, G., & Wang, A. (2015). pH dependent phosphorus release from waste activated sludge: Contributions of phosphorus speciation. Chemical Engineering Journal, 267, 260–265. https://doi.org/10.1016/j.cej.2015.01.037
  • Xu, Y., Hu, F., Wang, X., Qu, Y., Xu, L., & Liu, Q. (2021a). Improvement of phosphorus release from sludge by combined electrochemical-EDTA treatment. Water Science and Technology, 83(8), 1824–1833. https://doi.org/10.2166/wst.2021.107
  • Xu, Y., Zhou, Q., Wang, X., Yang, M., Fang, Y., & Lu, Y. (2021b). An efficient strategy of phosphorus recovery: Electrochemical pretreatment enhanced the anaerobic fermentation of waste activated sludge. Chemosphere, 268, 129391. https://doi.org/10.1016/j.chemosphere.2020.129391
  • Yang, M., Chen, J., Wang, X., Sun, Y., Xu, Y., & Liu, Q. (2021). Enhancement of phosphorus release from waste activated sludge by electrochemical treatment. Environmental Technology, 42(23), 3698–3706. https://doi.org/10.1080/09593330.2020.1739145
  • Yang, Y., Shi, X., Ballent, W., & Mayer, B. K. (2017). Biological phosphorus recovery: Review of current progress and future needs. Water Environment Research, 89(12), 2122–2135. https://doi.org/10.2175/106143017X15054988926424
  • Ye, C., Yuan, H., Lou, Z., & Zhu, N. (2016). Combined electrochemical and hypochlorite pretreatment for improving solubilization and anaerobic digestion of waste-activated sludge: Effect of hypochlorite dosage. Energy & Fuels, 30(4), 2990–2996. https://doi.org/10.1021/acs.energyfuels.5b02884
  • Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., Zhang, R., & Li, Y.-Y. (2021). Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. The Science of the Total Environment, 786, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437
  • Zeng, Q., Hao, T., Sun, B., Luo, J., Chen, G., & Crittenden, J. C. (2019a). Electrochemical pretreatment for sludge sulfide control without chemical dosing: A mechanistic study. Environmental Science & Technology, 53(24), 14559–14567. https://doi.org/10.1021/acs.est.9b04760
  • Zeng, Q., Huang, H., Tan, Y., Chen, G., & Hao, T. (2021). Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. Water Research, 209, 117939. https://doi.org/10.1016/j.watres.2021.117939
  • Zeng, Q., Zan, F., Hao, T., Biswal, B. K., Lin, S., van Loosdrecht, M. C. M., & Chen, G. (2019b). Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide. Water Research, 166, 115035. https://doi.org/10.1016/j.watres.2019.115035
  • Zhang, J. Q., Chen, Z. J., Liu, Y. W., Wei, W., & Ni, B. J. (2022). Phosphorus recovery from wastewater and sewage sludge as vivianite. Journal of Cleaner Production, 370, 133439. https://doi.org/10.1016/j.jclepro.2022.133439
  • Zhang, J., Zhao, X., Wang, Y., & Djellabi, R. (2020). Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation. Environmental Science & Technology, 54(2), 1204–1213.
  • Zhen, G., Lu, X., Li, Y.-Y., & Zhao, Y. (2014). Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Applied Energy, 128, 93–102. https://doi.org/10.1016/j.apenergy.2014.04.062
  • Zheng, Y., Wan, Y., Zhang, Y., Huang, J., Yang, Y., Tsang, D. C., Wang, H., Chen, H., & Gao, B. (2022). Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. Critical Reviews in Environmental Science and Technology, 1–25. https://doi.org/10.1080/10643389.2022.2128194

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.