539
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Cadmium contamination in food crops: Risk assessment and control in smart age

, , , , , , & show all
Pages 1643-1661 | Published online: 07 Feb 2023

References

  • Abe, T., Nonoue, Y., Ono, N., Omoteno, M., Kuramata, M., Fukuoka, S., Yamamoto, T., Yano, M., & Ishikawa, S. (2013). Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breeding Science, 63(3), 284–291. https://doi.org/10.1270/jsbbs.63.284
  • Abe, T., Taguchi-Shiobara, F., Kojima, Y., Ebitani, T., Kuramata, M., Yamamoto, T., Yano, M., & Ishikawa, S. (2011). Detection of a QTL for accumulating Cd in rice that enables efficient Cd phytoextraction from soil. Breeding Science, 61(1), 43–51. https://doi.org/10.1270/jsbbs.61.43
  • AbuHammad, W. A., Mamidi, S., Kumar, A., Pirseyedi, S., Manthey, F. A., Kianian, S. F., Alamri, M. S., Mergoum, M., & Elias, E. M. (2016). Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars. Molecular Breeding, 36(8), 112. https://doi.org/10.1007/s11032-016-0536-1
  • Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 43(24), 9361–9367. https://doi.org/10.1021/es9022738
  • Ban, Y., Ishikawa, G., Ueda, H., Ishikawa, N., Kato, K., Takata, K., Matsuyama, M., Handa, H., Nakamura, T., & Yanaka, M. (2020). Novel quantitative trait loci for low grain cadmium concentration in common wheat (Triticum aestivum L.). Breeding Science, 70(3), 331–341. https://doi.org/10.1270/jsbbs.19150
  • Baseggio, M., Murray, M., Wu, D., Ziegler, G., Kaczmar, N., Chamness, J., Hamilton, J. P., Buell, C. R., Vatamaniuk, O. K., Buckler, E. S., Smith, M. E., Baxter, I., Tracy, W. F., & Gore, M. A. (2021). Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3-Genes Genomes Genetics, 11, 8.
  • Bashir, A., Rizwan, M., Ali, S., Adrees, M., Rehman, M., & Qayyum, M. F. (2020). Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat: A life cycle study. Environmental Science and Pollution Research International, 27(19), 23926–23936. https://doi.org/10.1007/s11356-020-08739-8
  • Bhatta, M., Baenziger, P. S., Waters, B. M., Poudel, R., Belamkar, V., Poland, J., & Morgounov, A. (2018). Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. International Journal of Molecular Sciences, 19(10), 3237. https://doi.org/10.3390/ijms19103237
  • Brus, D. J., Li, Z., Song, J., Koopmans, G. F., Temminghoff, E. J. M., Yin, X., Yao, C., Zhang, H., Luo, Y., & Japenga, J. (2009). Predictions of spatially averaged cadmium contents in rice grains in the Fuyang valley, P.R. Journal of Environmental Quality, 38(3), 1126–1136. https://doi.org/10.2134/jeq2008.0228
  • Bukowski, R., Guo, X., Lu, Y., Zou, C., He, B., Rong, Z., Wang, B., Xu, D., Yang, B., Xie, C., Fan, L., Gao, S., Xu, X., Zhang, G., Li, Y., Jiao, Y., Doebley, J. F., Ross-Ibarra, J., Lorant, A., … Xu, Y. (2018). Construction of the third-generation Zea mays haplotype map. Gigascience, 7(4), 1–12. https://doi.org/10.1093/gigascience/gix134
  • Cao, Z. Z., Lin, X. Y., Yang, Y. J., Guan, M. Y., Xu, P., & Chen, M. X. (2019). Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biology, 19(1), 250. https://doi.org/10.1186/s12870-019-1867-y
  • Chen, Q., Tang, W., Zeng, G., Sheng, H., Shi, W., & Xiao, Y. (2020). Reduction of cadmium accumulation in the grains of male sterile rice Chuang-5S carrying Pi48 or Pi49 through marker-assisted selection. 3 Biotech, 10(12), 539. https://doi.org/10.1007/s13205-020-02533-6
  • Chen, Y., Chen, F., Xie, M., Jiang, Q., Chen, W., & Ao, T. (2020). The impact of stabilizing amendments on the microbial community and metabolism in cadmium-contaminated paddy soils. Chemical Engineering Journal, 395, 125132. https://doi.org/10.1016/j.cej.2020.125132
  • Ci, D., Jiang, D., Li, S., Wollenweber, B., Dai, T., & Cao, W. (2012). Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiologiae Plantarum, 34(1), 191–202. https://doi.org/10.1007/s11738-011-0818-5
  • Derakhshani, B., Jafary, H., Zanjani, B. M., Hasanpur, K., Mishina, K., Tanaka, T., Kawahara, Y., & Oono, Y. (2020). Combined QTL mapping and RNA-Seq profiling reveals candidate genes associated with cadmium tolerance in barley. Plos One, 15(4), e0230820. https://doi.org/10.1371/journal.pone.0230820
  • Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1077. https://doi.org/10.1126/science.1258096
  • EFSA. (2009). European food safety authority scientific opinion: Cadmium in food: Scientific opinion of the panel on contaminants in the food chain. EFSA Journal, 980, 1–139.
  • El-Soda, M., & Aljabri, M. (2022). Genome-wide association mapping of grain metal accumulation in wheat. Genes, 13(6), 1052. https://doi.org/10.3390/genes13061052
  • European Commission. (2006). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Commission L364 European Commission, 5–24.
  • Feng, L., Yan, H., Dai, C., Xu, W., Gu, F., Zhang, F., Li, T., Xian, J., He, X., Yu, Y., Ma, M., Wang, F., & He, Z. (2020). The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. The Science of the Total Environment, 729, 138972. https://doi.org/10.1016/j.scitotenv.2020.138972
  • Gage, J. L., Monier, B., Giri, A., & Buckler, E. S. (2020). Ten years of the maize nested association mapping population: Impact, limitations, and future directions. The Plant Cell, 32(7), 2083–2093. https://doi.org/10.1105/tpc.19.00951
  • Gao, F., Shen, Y., Brett Sallach, J., Li, H., Zhang, W., Li, Y., & Liu, C. (2022). Predicting crop root concentration factors of organic contaminants with machine learning models. Journal of Hazardous Materials, 424(Pt B), 127437. https://doi.org/10.1016/j.jhazmat.2021.127437
  • Gao, J., Ye, X., Wang, X., Jiang, Y., Li, D., Ma, Y., & Sun, B. (2021). Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil. Ecotoxicology and Environmental Safety, 220, 112404. https://doi.org/10.1016/j.ecoenv.2021.112404
  • He, L., Meng, J., Wang, Y., Tang, X., Liu, X., Tang, C., Ma, L. Q., & Xu, J. (2021). Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotoxicology and Environmental Safety, 209, 111840. https://doi.org/10.1016/j.ecoenv.2020.111840
  • Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science & Technology, 50(8), 4178–4185. https://doi.org/10.1021/acs.est.5b05424
  • Hu, P. J., Li, Z., Yuan, C., Ouyang, Y. N., Zhou, L. Q., Huang, J. X., Huang, Y. J., Luo, Y. M., Christie, P., & Wu, L. H. (2013). Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments, 13(5), 916–924. https://doi.org/10.1007/s11368-013-0658-6
  • Hu, P. J., Ouyang, Y. N., Wu, L. H., Shen, L. B., Luo, Y. M., & Christie, P. (2015). Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences (China), 27, 225–231. https://doi.org/10.1016/j.jes.2014.05.048
  • Huang, H., Tang, Z. X., Qi, H. Y., Ren, X. T., Zhao, F. J., & Wang, P. (2022). Soil amendments with ZnSO4 or MnSO4 are effective at reducing Cd accumulation in rice grain: An application of the voltaic cell principle. Environmental Pollution (Barking, Essex: 1987), 294, 118650. https://doi.org/10.1016/j.envpol.2021.118650
  • Huang, Y., Sun, C. X., Min, J., Chen, Y. L., Tong, C., & Bao, J. S. (2015). Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 63(50), 10885–10892. https://doi.org/10.1021/acs.jafc.5b04932
  • Humphreys, I. R., Pei, J., Baek, M., Krishnakumar, A., Anishchenko, I., Ovchinnikov, S., Zhang, J., Ness, T. J., Banjade, S., Bagde, S. R., Stancheva, V. G., Li, X.-H., Liu, K., Zheng, Z., Barrero, D. J., Roy, U., Kuper, J., Fernández, I. S., Szakal, B., … Baker, D. (2021). Computed structures of core eukaryotic protein complexes. Science, 374(6573), 1340. https://doi.org/10.1126/science.abm4805
  • Hussain, B., Umer, M. J., Li, J., Ma, Y., Abbas, Y., Ashraf, M. N., Tahir, N., Ullah, A., Gogoi, N., & Farooq, M. (2021). Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 286, 125557. https://doi.org/10.1016/j.jclepro.2020.125557
  • Hussain, W., Campbell, M., Jarquin, D., Walia, H., & Morota, G. (2020). Variance heterogeneity genome-wide mapping for cadmium in bread wheat reveals novel genomic loci and epistatic interactions. The Plant Genome, 13(1), e20011. https://doi.org/10.1002/tpg2.20011
  • Ishikawa, S., Abe, T., Kuramata, M., Yamaguchi, M., Ando, T., Yamamoto, T., & Yano, M. (2010). A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. Journal of Experimental Botany, 61(3), 923–934. https://doi.org/10.1093/jxb/erp360
  • Ishikawa, S., Ae, N., & Yano, M. (2005). Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). The New Phytologist, 168(2), 345–350. https://doi.org/10.1111/j.1469-8137.2005.01516.x
  • Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N. K., & Nakanishi, H. (2012). Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19166–19171. https://doi.org/10.1073/pnas.1211132109
  • Kashiwagi, T., Shindoh, K., Hirotsu, N., & Ishimaru, K. (2009). Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biology, 9, 8. https://doi.org/10.1186/1471-2229-9-8
  • Kōji, N., Yuichi, Y., Ryumon, H., Masao, I., Ikiko, T., Shunichi, K., & Takashi, K. (1983). The relationship between itai-itai disease among inhabitants of the jinzu river basin and cadmium in rice. Toxicology Letters, 17, 263–266.
  • Lei, G. J., Fujii Kashino, M., Wu, D. Z., Hisano, H., Saisho, D., Deng, F., Yamaji, N., Sato, K., Zhao, F. J., & Ma, J. F. (2020). Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nature Food, 1(8), 489–499. https://doi.org/10.1038/s43016-020-0130-x
  • Lekeux, G., Crowet, J.-M., Nouet, C., Joris, M., Jadoul, A., Bosman, B., Carnol, M., Motte, P., Lins, L., Galleni, M., & Hanikenne, M. (2019). Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase. Journal of Experimental Botany, 70(1), 329–341. https://doi.org/10.1093/jxb/ery353
  • Li, B., Yang, L., Wang, C. Q., Zheng, S. Q., Xiao, R., & Guo, Y. (2019). Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research International, 26(14), 13762–13772. https://doi.org/10.1007/s11356-018-2914-1
  • Li, D. P., Nanseki, T., Chomei, Y., & Kuang, J. S. (2023). A review of smart agriculture and production practices in Japanese large-scale rice farming. Journal of the Science of Food and Agriculture, 103, 1609–1620. https://doi.org/10.1002/jsfa.12204
  • Li, P., Hao, H., Mao, X., Xu, J., Lv, Y., Chen, W., Ge, D., & Zhang, Z. (2022). Convolutional neural network-based applied research on the enrichment of heavy metals in the soil–rice system in China. Environmental Science and Pollution Research International, 29(35), 53642–53655. https://doi.org/10.1007/s11356-022-19640-x
  • Liang, Y., Wu, Q.-T., Lee, C. C. C., Jiang, C., & Wei, Z. (2022). Evaluation of manganese application after soil stabilization to effectively reduce cadmium in rice. Journal of Hazardous Materials, 424(Pt A), 127296. https://doi.org/10.1016/j.jhazmat.2021.127296
  • Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582–585. https://doi.org/10.1038/s41587-020-0455-x
  • Liu, C., Ding, S., Zhang, A., Hong, K., Jiang, H., Yang, S., Ruan, B., Zhang, B., Dong, G., Guo, L., Zeng, D., Qian, Q., & Gao, Z. (2020). Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Journal of Integrative Plant Biology, 62(3), 349–359. https://doi.org/10.1111/jipb.12909
  • Liu, C. L., Gao, Z. Y., Shang, L. G., Yang, C. H., Ruan, B. P., Zeng, D. L., Guo, L. B., Zhao, F. J., Huang, C. F., & Qian, Q. (2020). Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. Journal of Integrative Plant Biology, 62(3), 314–329. https://doi.org/10.1111/jipb.12794
  • Liu, H.-J., Wang, X., Xiao, Y., Luo, J., Qiao, F., Yang, W., Zhang, R., Meng, Y., Sun, J., Yan, S., Peng, Y., Niu, L., Jian, L., Song, W., Yan, J., Li, C., Zhao, Y., Liu, Y., Warburton, M. L., Zhao, J., & Yan, J. (2020). CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 21(1), 20. https://doi.org/10.1186/s13059-020-1930-x
  • Liu, S., Jiang, J., Liu, Y., Meng, J., Xu, S., Tan, Y., Li, Y., Shu, Q., & Huang, J. (2019). Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low cd rice. Rice Science, 26, 88–97.
  • Liu, X., Chen, S., Chen, M., Zheng, G., Peng, Y., Shi, X., Qin, P., Xu, X., & Teng, S. (2019). Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands. Frontiers in Plant Science, 10, 61. https://doi.org/10.3389/fpls.2019.00061
  • Liu, X., Fan, F., Liu, M., Long, W., Yu, Y., Yuan, H., Pan, G., Li, N., Li, S., & Liu, J. (2020). Quantitative trait loci mapping of mineral element contents in brown rice using backcross inbred lines derived from Oryza longistaminata. Frontiers in Plant Science, 11, 1229. https://doi.org/10.3389/fpls.2020.01229
  • Luo, J.-S., Huang, J., Zeng, D.-L., Peng, J.-S., Zhang, G.-B., Ma, H.-L., Guan, Y., Yi, H.-Y., Fu, Y.-L., Han, B., Lin, H.-X., Qian, Q., & Gong, J.-M. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 9(1), 645. https://doi.org/10.1038/s41467-018-03088-0
  • Ministry of Ecology and Environment of China. (2014). The report on the national general survey of soil contamination.
  • Ministry of Health of the People’s Republic of China. (2012). Maximum levels of contaminants in foods. GB 2762–2012.
  • Mu, T., Zhou, T., Li, Z., Hu, P., Luo, Y., Christie, P., & Wu, L. (2020). Prediction models for rice cadmium accumulation in Chinese paddy fields and the implications in deducing soil thresholds based on food safety standards. Environmental Pollution (Barking, Essex: 1987), 258, 113879. https://doi.org/10.1016/j.envpol.2019.113879
  • Mwilola, P. N., Mukumbuta, I., Shitumbanuma, V., Chishala, B. H., Uchida, Y., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Lead, zinc and cadmium accumulation, and associated health risks, in maize grown near the Kabwe mine in Zambia in response to organic and inorganic soil amendments. International Journal of Environmental Research and Public Health, 17(23), 9038. https://doi.org/10.3390/ijerph17239038
  • Nguyen, C., Roucou, A., Grignon, G., Cornu, J. Y., & Méléard, B. (2021). Efficient models for predicting durum wheat grain Cd conformity using soil variables and cultivars. Journal of Hazardous Materials, 401, 123131. https://doi.org/10.1016/j.jhazmat.2020.123131
  • Norton, G. J., Deacon, C. M., Xiong, L., Huang, S., Meharg, A. A., & Price, A. H. (2010). Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant and Soil, 329(1-2), 139–153. https://doi.org/10.1007/s11104-009-0141-8
  • Norton, G. J., Travis, A., Ruang-Areerate, P., Nicol, G. W., Adeosun, A. A., Hossain, M., Islam, M. R., Douglas, A., & Price, A. H. (2021). Genetic loci regulating cadmium content in rice grains. Euphytica: Netherlands Journal of Plant Breeding, 217(3), 35. https://doi.org/10.1007/s10681-020-02752-1
  • Öborn, I., Jansson, G., & Johnsson, L. (1995). A field study on the influence of soil ph on trace element levels in spring wheat (Triticum aestivum), potatoes (Solanum tuberosum) and carrots (Daucus carota). Water, Air, & Soil Pollution, 85(2), 835–840. https://doi.org/10.1007/BF00476933
  • Oladzad-Abbasabadi, A., Kumar, A., Pirseyedi, S., Salsman, E., Dobrydina, M., Poudel, R. S., AbuHammad, W. A., Chao, S. A. M., Faris, J. D., & Elias, E. M. (2018). Identification and validation of a new source of low grain cadmium accumulation in durum wheat. G3 (Bethesda, Md.), 8(3), 923–932. https://doi.org/10.1534/g3.117.300370
  • Pan, X., Li, Y., Liu, W., Liu, S., Min, J., Xiong, H., Dong, Z., Duan, Y., Yu, Y., & Li, X. (2020). QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study. Scientific Reports, 10(1), 11791. https://doi.org/10.1038/s41598-020-68742-4
  • Plegaria, J. S., Dzul, S. P., Zuiderweg, E. R. P., Stemmler, T. L., & Pecoraro, V. L. (2015). Apoprotein structure and metal binding characterization of a de novo designed peptide, alpha 3DIV, that sequesters toxic heavy metals. Biochemistry, 54(18), 2858–2873. https://doi.org/10.1021/acs.biochem.5b00064
  • Qiao, L., Wheeler, J., Wang, R., Isham, K., Klassen, N., Zhao, W., Su, M., Zhang, J., Zheng, J., & Chen, J. (2021). Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Frontiers in Plant Science, 12, 756741. https://doi.org/10.3389/fpls.2021.756741
  • Rehman, M., Zafar, M., Waris, A. A., Rizwan, M., Ali, S., Sabir, M., Usman, M., Ayub, M. A., & Ahmad, Z. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere, 244, 125548. https://doi.org/10.1016/j.chemosphere.2019.125548
  • Römkens, P., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009). Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environmental Pollution (Barking, Essex: 1987), 157(8-9), 2435–2444. https://doi.org/10.1016/j.envpol.2009.03.009
  • Safdar, L. B., Almas, F., Sarfraz, S., Ejaz, M., Ali, Z., Mahmood, Z., Yang, L., Tehseen, M. M., Ikram, M., Liu, S., & Quraishi, U. M. (2020). Genome-wide association study identifies five new cadmium uptake loci in wheat. The Plant Genome, 13(2), e20030. https://doi.org/10.1002/tpg2.20030
  • Salsman, E., Kumar, A., AbuHammad, W., Abbasabadi, A. O., Dobrydina, M., Chao, S., Li, X., Manthey, F. A., & Elias, E. M. (2018). Development and validation of molecular markers for grain cadmium in durum wheat. Molecular Breeding, 38(3), 28. https://doi.org/10.1007/s11032-018-0788-z
  • Sasaki, A., Yamaji, N., & Ma, J. F. (2014). Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 65(20), 6013–6021. https://doi.org/10.1093/jxb/eru340
  • Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 24(5), 2155–2167. https://doi.org/10.1105/tpc.112.096925
  • Sato, H., Shirasawa, S., Maeda, H., Nakagomi, K., Kaji, R., Ohta, H., Yamaguchi, M., & Nishio, T. (2011). Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23. Breeding Science, 61(2), 196–200. https://doi.org/10.1270/jsbbs.61.196
  • Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K., Takahashi, H., Watanabe, A., & Akagi, H. (2012). Mutations in rice (Oryza sativa) heavy metal atpase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant & Cell Physiology, 53(1), 213–224. https://doi.org/10.1093/pcp/pcr166
  • Strokach, A., & Kim, P. M. (2022). Deep generative modeling for protein design. Current Opinion in Structural Biology, 72, 226–236. https://doi.org/10.1016/j.sbi.2021.11.008
  • Sun, G. L., Reynolds, E. E., & Belcher, A. M. (2019). Designing yeast as plant-like hyperaccumulators for heavy metals. Nature Communications, 10(1), 5080. https://doi.org/10.1038/s41467-019-13093-6
  • Tan, Y., Sun, L., Song, Q., Mao, D., Zhou, J., Jiang, Y., Wang, J., Fan, T., Zhu, Q., Huang, D., Xiao, H., & Chen, C. (2020). Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 133(2), 529–545. https://doi.org/10.1007/s00122-019-03485-z
  • Tanaka, N., Nishida, S., Kamiya, T., & Fujiwara, T. (2016). Large-scale profiling of brown rice ionome in an ethyl methanesulphonate-mutagenized hitomebore population and identification of high- and low-cadmium lines. Plant and Soil, 407(1-2), 109–117. https://doi.org/10.1007/s11104-016-2812-6
  • Tang, B., Luo, M., Zhang, Y., Guo, H., Li, J., Song, W., Zhang, R., Feng, Z., Kong, M., Li, H., Cao, Z., Lu, X., Li, D., Zhang, J., Wang, R., Wang, Y., Chen, Z., Zhao, Y., & Zhao, J. (2021). Natural variations in the P-type ATPase heavy metal transporter gene ZmHMA3 control cadmium accumulation in maize grains. Journal of Experimental Botany, 72(18), 6230–6246. https://doi.org/10.1093/jxb/erab254
  • Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., He, H., Wang, W., Zeng, X., Shao, Y., Pan, Y., Hu, Y., Peng, Y., Fu, X., Li, H., Xia, S., & Zhao, B. (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 7(1), 14438. https://doi.org/10.1038/s41598-017-14832-9
  • Tellez Plaza, M., Jones, M. R., Dominguez Lucas, A., Guallar, E., & Navas Acien, A. (2013). Cadmium exposure and clinical cardiovascular disease: A systematic review. Current Atherosclerosis Reports, 15(10), 356. https://doi.org/10.1007/s11883-013-0356-2
  • Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590–596. https://doi.org/10.1038/s41586-021-03828-1
  • Ueno, D., Kono, I., Yokosho, K., Ando, T., Yano, M., & Ma, J. F. (2009). A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). The New Phytologist, 182(3), 644–653. https://doi.org/10.1111/j.1469-8137.2009.02784.x
  • Ueno, D., Koyama, E., Kono, I., Ando, T., Yano, M., & Ma, J. F. (2009). Identification of a novel major quantitative trait locus controlling distribution of cd between roots and shoots in rice. Plant & Cell Physiology, 50(12), 2223–2233. https://doi.org/10.1093/pcp/pcp160
  • Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16500–16505. https://doi.org/10.1073/pnas.1005396107
  • Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y., Yoshida, A., Kyozuka, J., Ishikawa, S., & Fujiwara, T. (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 20959–20964. https://doi.org/10.1073/pnas.1116531109
  • Wang, J. R., Fu, W. W., Wang, R., Hu, D. X., Cheng, H., Zhao, J., Jiang, Y., & Kang, Z. S. (2020). WGVD: An integrated web-database for wheat genome variation and selective signatures. Database, 2020, 1–9. https://doi.org/10.1093/database/baaa090
  • Wang, K., Yan, T.-Z., Xu, S.-L., Yan, X., Zhou, Q.-F., Zhao, X.-H., Li, Y.-F., Wu, Z.-X., Qin, P., Fu, C.-J., Fu, J., Zhou, Y.-B., & Yang, Y.-Z. (2021). Validating a segment on chromosome 7 of japonica for establishing low-cadmium accumulating indica rice variety. Scientific Reports, 11(1), 6053. https://doi.org/10.1038/s41598-021-85324-0
  • Wang, T., Li, Y., Fu, Y., Xie, H., Song, S., Qiu, M., Wen, J., Chen, M., Chen, G., Tian, Y., Li, C., Yuan, D., Wang, J., & Li, L. (2019). Mutation at different sites of metal transporter gene OsNramp5 affects cd accumulation and related agronomic traits in rice (Oryza sativa L.). Frontiers in Plant Science, 10, 1081. https://doi.org/10.3389/fpls.2019.01081
  • Wang, W., Guo, H., Wu, C. N., Yu, H., Li, X. K., Chen, G. F., Tian, J. C., & Deng, Z. Y. (2021). Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biology, 21(1), 311. https://doi.org/10.1186/s12870-021-03105-3
  • Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R. R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K. C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., … Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703), 43–49. https://doi.org/10.1038/s41586-018-0063-9
  • Wang, Y., Su, Y., & Lu, S. (2020). Predicting accumulation of Cd in rice (Oryza sativa L.) and soil threshold concentration of Cd for rice safe production. The Science of the Total Environment, 738, 139805. https://doi.org/10.1016/j.scitotenv.2020.139805
  • Wang, Y., Wang, H. C., Wei, L., Li, S. L., Liu, L. Y., & Wang, X. W. (2020). Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Research, 48(12), 6403–6412. https://doi.org/10.1093/nar/gkaa325
  • FAO/WHO. (2003). Report of the Sixty First Meeting of Joint FAO/WHO Expert Committee on Food Additives. Rome.
  • Wiebe, K., Harris, N. S., Faris, J. D., Clarke, J. M., Knox, R. E., Taylor, G. J., & Pozniak, C. J. (2010). Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 121(6), 1047–1058. https://doi.org/10.1007/s00122-010-1370-1
  • Würschum, T., Liu, W., Gowda, M., Maurer, H. P., Fischer, S., Schechert, A., & Reif, J. C. (2012). Comparison of biometrical models for joint linkage association mapping. Heredity, 108(3), 332–340. https://doi.org/10.1038/hdy.2011.78
  • Xue, D., Chen, M., & Zhang, G. (2009). Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica, 165(3), 587–596. https://doi.org/10.1007/s10681-008-9785-3
  • Yan, H., Guo, H., Li, T., Zhang, H., Xu, W., Xie, J., Zhu, X., Yu, Y., Chen, J., Zhao, S., Xu, J., Hu, M., Jiang, Y., Zhang, H., Ma, M., & He, Z. (2023). High-precision early warning system for rice cadmium accumulation risk assessment. Science of the Total Environment, 859, 160135. https://doi.org/10.1016/j.scitotenv.2022.160135
  • Yan, H., Guo, H., Xu, W., Dai, C., Kimani, W., Xie, J., Zhang, H., Li, T., Wang, F., Yu, Y., Ma, M., Hao, Z., & He, Z. (2023). GWAS-assisted genomic prediction of cadmium accumulation in maize kernel with machine learning and linear statistical methods. Journal of Hazardous Materials, 441, 129929. https://doi.org/10.1016/j.jhazmat.2022.129929
  • Yan, H., Xu, W., Xie, J., Gao, Y., Wu, L., Sun, L., Feng, L., Chen, X., Zhang, T., Dai, C., Li, T., Lin, X., Zhang, Z., Wang, X., Li, F., Zhu, X., Li, J., Li, Z., Chen, C., … He, Z. (2019). Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 10(1), 2562. https://doi.org/10.1038/s41467-019-10544-y
  • Yan, Y. F., Lestari, P., Lee, K. J., Kim, M. Y., Lee, S. H., & Lee, B. W. (2013). Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genome, 56(4), 227–232. https://doi.org/10.1139/gen-2012-0106
  • Yu, E., Wang, W., Yamaji, N., Fukuoka, S., Che, J., Ueno, D., Ando, T., Deng, F., Hori, K., Yano, M., Shen, R. F., & Ma, J. F. (2022). Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. Nature Food, 3(8), 597–607. https://doi.org/10.1038/s43016-022-00569-w
  • Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-005-4669-0
  • Zdunić, Z., Grljušić, S., Ledenčan, T., Duvnjak, T., & Šimić, D. (2014). Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas, 151(2-3), 55–60. https://doi.org/10.1111/hrd2.00048
  • Zhang, W. L., Du, Y., Zhai, M. M., & Shang, Q. (2014). Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Science of the Total Environment, 470-471, 224–228. https://doi.org/10.1016/j.scitotenv.2013.09.070
  • Zhang, X., Zhang, G., Guo, L., Wang, H., Zeng, D., Dong, G., Qian, Q., & Xue, D. (2011). Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica, 180(2), 173–179. https://doi.org/10.1007/s10681-011-0346-9
  • Zhao, F., Wang, N., Bao, F., Zhao, G., Jing, L., Wang, G., Han, Q., Hao, Z., & Chen, B. (2022). Genome-wide association study reveals genetic basis of trace elements accumulation in maize kernels. Agriculture, 12(2), 262. https://doi.org/10.3390/agriculture12020262
  • Zhao, J. L., Yang, W., Zhang, S. H., Yang, T. F., Liu, Q., Dong, J. F., Fu, H., Mao, X. X., & Liu, B. (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice (New York, N.Y.), 11(1), 61. https://doi.org/10.1186/s12284-018-0254-x
  • Zhao, X., Luo, L., Cao, Y., Liu, Y., Li, Y., Wu, W., Lan, Y., Jiang, Y., Gao, S., Zhang, Z., Shen, Y., Pan, G., & Lin, H. (2018). Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics, 19(1), 91. https://doi.org/10.1186/s12864-017-4395-x
  • Zhu, G., Ye, T., Bernard, A., Jin, T., Kong, Q., Bo, M., Wang, H., & Nordberg, G. (2004). Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environmental Research, 96(3), 353–359. https://doi.org/10.1016/j.envres.2004.02.012
  • Zhuang, Z., Niño Savala, A. G., Mi, Z. D., Wan, Y. N., Su, D. C., Li, H. F., & Fangmeier, A. (2021). Cadmium accumulation in wheat and maize grains from China: Interaction of soil properties, novel enrichment models and soil thresholds. Environmental Pollution (Barking, Essex: 1987), 275, 116623. https://doi.org/10.1016/j.envpol.2021.116623
  • Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., Li, J., Liu, G., Huang, X., Cao, X., & Gao, C. (2022). An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 40(9), 1394–1402. https://doi.org/10.1038/s41587-022-01254-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.