2,118
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Current applications and future impact of machine learning in emerging contaminants: A review

, , , , &
Pages 1817-1835 | Published online: 23 Mar 2023

References

  • Abdi, J., Hadipoor, M., Hadavimoghaddam, F., & Hemmati-Sarapardeh, A. (2022). Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts. Chemosphere, 287(Pt 2), 132135. https://doi.org/10.1016/j.chemosphere.2021.132135
  • Aminov, R. I. (2011). Horizontal gene exchange in environmental microbiota. Frontiers in Microbiology, 2, 158. https://doi.org/10.3389/fmicb.2011.00158
  • Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., & Zhang, L. (2018). DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 6(1), 23. https://doi.org/10.1186/s40168-018-0401-z
  • Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the International Research Workshop on the occurrence, effects and fate of microplastic marine debris. National Oceanic and Atmospheric Administration Technical Memorandum NOS-OR&R-30.
  • Ban, Z., Yuan, P., Yu, F., Peng, T., Zhou, Q., & Hu, X. (2020). Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proceedings of the National Academy of Sciences, 117(19), 10492–10499. https://doi.org/10.1073/pnas.1919755117
  • Bianco, V., Memmolo, P., Carcagnì, P., Merola, F., Paturzo, M., Distante, C., & Ferraro, P. (2020). Microplastic identification via holographic imaging and machine learning. Advanced Intelligent Systems, 2(2), 1900153. https://doi.org/10.1002/aisy.201900153
  • Buzea, C., & Pacheco, I. (2017). Nanomaterial and nanoparticle: Origin and activity. In M. Ghorbanpour, K. Manika, & A. Varma (Eds.), Nanoscience and plant–soil systems (pp. 71–112). Springer International Publishing. https://doi.org/10.1007/978-3-319-46835-8_3
  • Caporuscio, F., Rastelli, G., Imbriano, C., & Del Rio, A. (2011). Structure-based design of potent aromatase inhibitors by high-throughput docking. Journal of Medicinal Chemistry, 54(12), 4006–4017. https://doi.org/10.1021/jm2000689
  • Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711–5741. https://doi.org/10.1007/s11356-014-3974-5
  • Chae, Y., Kim, D., Kim, S. W., & An, Y. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 8(1), 1. https://doi.org/10.1038/s41598-017-18849-y
  • Chang, H., Choo, K., Lee, B., & Choi, S. (2009). The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. Journal of Hazardous Materials, 172(1), 1–12. https://doi.org/10.1016/j.jhazmat.2009.06.135
  • Chen, G., Shen, Z., Iyer, A., Ghumman, U. F., Tang, S., Bi, J., Chen, W., & Li, Y. (2020). Machine-learning-assisted de novo design of organic molecules and polymers: Opportunities and challenges. Polymers, 12(1), 1. https://doi.org/10.3390/polym12010163
  • Chen, Y., Cheng, F., Sun, L., Li, W., Liu, G., & Tang, Y. (2014). Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicology and Environmental Safety, 110, 280–287. https://doi.org/10.1016/j.ecoenv.2014.08.026
  • Cheng, W., & Ng, C. A. (2019). Using machine learning to classify bioactivity for 3486 per- and polyfluoroalkyl substances (PFASs) from the OECD list. Environmental Science & Technology, 53(23), 13970–13980. https://doi.org/10.1021/acs.est.9b04833
  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22. https://doi.org/10.1007/s10311-016-0600-4
  • Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., … Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141), 20170387. https://doi.org/10.1098/rsif.2017.0387
  • Cizmas, L., Sharma, V. K., Gray, C. M., & McDonald, T. J. (2015). Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environmental Chemistry Letters, 13(4), 381–394. https://doi.org/10.1007/s10311-015-0524-4
  • da Silva, V. H., Murphy, F., Amigo, J. M., Stedmon, C., & Strand, J. (2020). Classification and quantification of microplastics (<100 μm) using a focal plane array–Fourier transform infrared imaging system and machine learning. Analytical Chemistry, 92(20), 13724–13733. https://doi.org/10.1021/acs.analchem.0c01324
  • Dairi, A., Cheng, T., Harrou, F., Sun, Y., & Leiknes, T. (2019). Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring. Sustainable Cities and Society, 50, 101670. https://doi.org/10.1016/j.scs.2019.101670
  • Delgado-Rodríguez, M., & Sillero-Arenas, M. (2018). Systematic review and meta-analysis. Medicina Intensiva, 42(7), 444–453. https://doi.org/10.1016/j.medin.2017.10.003
  • Demain, A. L., & Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62(1), 5–16. https://doi.org/10.1038/ja.2008.16
  • Di Nardo, G., & Gilardi, G. (2013). Human aromatase: Perspectives in biochemistry and biotechnology. Biotechnology and Applied Biochemistry, 60(1), 92–101. https://doi.org/10.1002/bab.1088
  • Furxhi, I., & Murphy, F. (2020). Predicting in vitro neurotoxicity induced by nanoparticles using machine learning. International Journal of Molecular Sciences, 21(15), 5280. https://doi.org/10.3390/ijms21155280
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Guglielmi, G., Saroj, D. P., Chiarani, D., & Andreottola, G. (2007). Sub-critical fouling in a membrane bioreactor for municipal wastewater treatment: Experimental investigation and mathematical modelling. Water Research, 41(17), 3903–3914. https://doi.org/10.1016/j.watres.2007.05.047
  • Gulson, B., McCall, M., Korsch, M., Gomez, L., Casey, P., Oytam, Y., Taylor, A., McCulloch, M., Trotter, J., Kinsley, L., & Greenoak, G. (2010). Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicological Sciences, 118(1), 140–149. https://doi.org/10.1093/toxsci/kfq243
  • Guo, Y., Ma, W., Li, J., Liu, W., Qi, P., Ye, Y., Guo, B., Zhang, J., & Qu, C. (2020). Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom. Environmental Pollution, 257, 113628. https://doi.org/10.1016/j.envpol.2019.113628
  • Hamedi, H., Mohammadzadeh, O., Rasouli, S., & Zendehboudi, S. (2021). A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems. Journal of Environmental Chemical Engineering, 9(6), 106406. https://doi.org/10.1016/j.jece.2021.106406
  • Han, B., Lin, Y., Yang, Y., Mao, N., Li, W., Wang, H., Yasuda, K., Wang, X., Fatemi, V., Zhou, L., Wang, J I. -J., Ma, Q., Cao, Y., Rodan-Legrain, D., Bie, Y. -Q., Navarro-Moratalla, E. én., Klein, D., MacNeill, D., Wu, S., … Palacios, T. (2020). Deep-learning-enabled fast optical identification and characterization of 2D materials. Advanced Materials, 32(29), 2000953. https://doi.org/10.1002/adma.202000953
  • Heo, S., Safder, U., & Yoo, C. (2019). Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health. Environmental Pollution, 253, 29–38. https://doi.org/10.1016/j.envpol.2019.06.081
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science (New York, N.Y.), 313(5786), 504–507. https://doi.org/10.1126/science.1127647
  • Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., & Liu, Y. (2017). Estimating PM2.5 concentrations in the conterminous united states using the random forest approach. Environmental Science & Technology, 51(12), 6936–6944. https://doi.org/10.1021/acs.est.7b01210
  • Huang, C., & Kuo, P. (2018). A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors (Basel, Switzerland), 18(7), 2220. https://doi.org/10.3390/s18072220
  • Huang, Y., Chen, J., Duan, Q., Feng, Y., Luo, R., Wang, W., Liu, F., Bi, S., & Lee, J. (2022). A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Frontiers of Environmental Science & Engineering, 16(3), 1–12. https://doi.org/10.1007/s11783-021-1472-9
  • Hufnagl, B., Stibi, M., Martirosyan, H., Wilczek, U., Möller, J. N., Löder, M. G. J., Laforsch, C., & Lohninger, H. (2022). Computer-assisted analysis of microplastics in environmental samples based on μFTIR imaging in combination with machine learning. Environmental Science & Technology Letters, 9(1), 90–95. https://doi.org/10.1021/acs.estlett.1c00851
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Kedzierski, M., Falcou-Préfol, M., Kerros, M. E., Henry, M., Pedrotti, M. L., & Bruzaud, S. (2019). A machine learning algorithm for high throughput identification of FTIR spectra: Application on microplastics collected in the Mediterranean Sea. Chemosphere, 234, 242–251. https://doi.org/10.1016/j.chemosphere.2019.05.113
  • Khatmullina, L., & Chubarenko, I. (2019). Transport of marine microplastic particles: Why is it so difficult to predict? Anthropocene Coasts 2(1), 293–305. https://doi.org/10.1139/anc-2018-0024
  • Kibbey, T. C. G., Jabrzemski, R., & O’Carroll, D. M. (2020). Supervised machine learning for source allocation of per- and polyfluoroalkyl substances (PFAS) in environmental samples. Chemosphere, 252, 126593. https://doi.org/10.1016/j.chemosphere.2020.126593
  • Kwon, H., Ali, Z. A., & Wong, B. M. (2022). Harnessing semi-supervised machine learning to automatically predict bioactivities of per- and polyfluoroalkyl substances (PFASs). Environmental Science & Technology Letters. https://doi.org/10.1021/acs.estlett.2c00530
  • Lam, P., Wong, R. S., Lam, K., Hung, L., Wong, M., Yung, L., Ho, Y., Wong, W., Hau, D. K., Gambari, R., & Chui, C. (2020). The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chemico-Biological Interactions, 320, 109023. https://doi.org/10.1016/j.cbi.2020.109023
  • Lan, L., Yao, Y., Ping, J., & Ying, Y. (2017). Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosensors and Bioelectronics, 91, 504–514. https://doi.org/10.1016/j.bios.2017.01.007
  • Lei, M., Zhang, L., Lei, J., Zong, L., Li, J., Wu, Z., & Wang, Z. (2015). Overview of emerging contaminants and associated human health effects. BioMed Research International, 2015, 404796. https://doi.org/10.1155/2015/404796
  • Li, J., & Gramatica, P. (2010). QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs. SAR and QSAR in Environmental Research, 21(7-8), 657–669. https://doi.org/10.1080/1062936X.2010.528254
  • Li, L., Yin, X., & Zhang, T. (2018). Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome, 6(1), 93. https://doi.org/10.1186/s40168-018-0480-x
  • Li, M., Yu, H., Wang, Y., Li, J., Ma, G., & Wei, X. (2020). QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene. Scientific Reports, 10(1), 1. https://doi.org/10.1038/s41598-020-71390-3
  • Li, W., Wu, G., Zhang, F., & Du, Q. (2017). Hyperspectral image classification using deep pixel-pair features. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 844–853. https://doi.org/10.1109/TGRS.2016.2616355
  • Liu, J., & Wong, M. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208–224. https://doi.org/10.1016/j.envint.2013.06.012
  • Liu, X., Lu, D., Zhang, A., Liu, Q., & Jiang, G. (2022). Data-driven machine learning in environmental pollution: Gains and problems. Environmental Science & Technology, 56(4), 2124–2133. https://doi.org/10.1021/acs.est.1c06157
  • Ma, Y., Wang, J., Wu, J., Tong, C., & Zhang, T. (2021). Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning. The Science of the Total Environment, 793, 148532. https://doi.org/10.1016/j.scitotenv.2021.148532
  • Martínez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399
  • Michel, A. P. M., Morrison, A. E., Preston, V. L., Marx, C. T., Colson, B. C., & White, H. K. (2020). Rapid identification of marine plastic debris via spectroscopic techniques and machine learning classifiers. Environmental Science & Technology, 54(17), 10630–10637.
  • Min, K., Cuiffi, J. D., & Mathers, R. T. (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11(1), 1. https://doi.org/10.1038/s41467-020-14538-z
  • Murr, L. E., Esquivel, E. V., Bang, J. J., de la Rosa, G., & Gardea-Torresdey, J. L. (2004). Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Research, 38(19), 4282–4296. https://doi.org/10.1016/j.watres.2004.08.010
  • Mustafa, G., & Komatsu, S. (2016). Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et. Biochimica et Biophysica Acta, 1864(8), 932–944. https://doi.org/10.1016/j.bbapap.2016.02.020
  • Niu, C., Li, X., Dai, R., & Wang, Z. (2022). Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Research, 216, 118299. https://doi.org/10.1016/j.watres.2022.118299
  • Noutsopoulos, C., Charalambous, V., & Koumaki, E. (2020). Evaluating the fate of emerging contaminants in wastewater treatment plants through plant-wide mathematical modelling. Environmental Processes, 7(4), 1065–1094. https://doi.org/10.1007/s40710-020-00459-y
  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006
  • Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., Shivaprasad, H. L., Ahmed, S., Chaudhry, M. J. I., Arshad, M., Mahmood, S., Ali, A., & Khan, A. A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427(6975), 630–633. https://doi.org/10.1038/nature02317
  • Oh, M., Pruden, A., Chen, C., Heath, L. S., Xia, K., & Zhang, L. (2018). MetaCompare: A computational pipeline for prioritizing environmental resistome risk. FEMS Microbiology Ecology, 94(7), fiy079. https://doi.org/10.1093/femsec/fiy079
  • Peng, T., Wei, C., Yu, F., Xu, J., Zhou, Q., Shi, T., & Hu, X. (2020). Predicting nanotoxicity by an integrated machine learning and metabolomics approach. Environmental Pollution, 267, 115434. https://doi.org/10.1016/j.envpol.2020.115434
  • Praetorius, A., Gundlach-Graham, A., Goldberg, E., Fabienke, W., Navratilova, J., Gondikas, A., Kaegi, R., Günther, D., Hofmann, T., & Kammer, F. V. D. (2017). Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 4(2), 307–314. https://doi.org/10.1039/C6EN00455E
  • Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T. P., Michalkova, A., Hwang, H.-M., Toropov, A., Leszczynska, D., & Leszczynski, J. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6(3), 175–178. https://doi.org/10.1038/nnano.2011.10
  • Rahmati, O., Mohammadi, F., Ghiasi, S. S., Tiefenbacher, J., Moghaddam, D. D., Coulon, F., Nalivan, O. A., & Tien Bui, D. (2020). Identifying sources of dust aerosol using a new framework based on remote sensing and modelling. The Science of the Total Environment, 737, 139508. https://doi.org/10.1016/j.scitotenv.2020.139508
  • Rajapaksha, A. U., Dilrukshi Premarathna, K. S., Gunarathne, V., Ahmed, A., & Vithanage, M. (2019). 9—Sorptive removal of pharmaceutical and personal care products from water and wastewater. In M. N. V. Prasad, M. Vithanage, & A. Kapley (Eds.), Pharmaceuticals and personal care products: Waste management and treatment technology (pp. 213–238). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-816189-0.00009-3
  • Raza, A., Bardhan, S., Xu, L., Yamijala, S. S. R. K. C., Lian, C., Kwon, H., & Wong, B. M. (2019). A machine learning approach for predicting defluorination of per- and polyfluoroalkyl substances (PFAS) for their efficient treatment and removal. Environmental Science & Technology Letters, 6(10), 624–629. https://doi.org/10.1021/acs.estlett.9b00476
  • Richardson, S. D., & Kimura, S. Y. (2017). Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environmental Technology & Innovation, 8, 40–56. https://doi.org/10.1016/j.eti.2017.04.002
  • Richardson, S. D., & Ternes, T. A. (2014). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 86(6), 2813–2848. https://doi.org/10.1021/ac500508t
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485–3498. https://doi.org/10.1021/jf104517j
  • Rodriguez, K. L., Hwang, J.-H., Esfahani, A. R., Sadmani, A. H. M. A., & Lee, W. H. (2020). Recent developments of PFAS-detecting sensors and future direction: A review. Micromachines, 11(7), 667. https://doi.org/10.3390/mi11070667
  • Roostaei, J., Colley, S., Mulhern, R., May, A. A., & Gibson, J. M. (2021). Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model. Journal of Hazardous Materials, 411, 125075. https://linkinghub.elsevier.com/retrieve/pii/S030438942100039X https://doi.org/10.1016/j.jhazmat.2021.125075
  • Rosi-Marshall, E. J., Kincaid, D. W., Bechtold, H. A., Royer, T. V., Rojas, M., & Kelly, J. J. (2013). Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecological Applications, 23(3), 583–593. https://doi.org/10.1890/12-0491.1
  • Rossi, L., Bagheri, M., Zhang, W., Chen, Z., Burken, J. G., & Ma, X. (2019). Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environmental Pollution, 246, 381–389. https://doi.org/10.1016/j.envpol.2018.12.029
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29. https://doi.org/10.1016/j.chemolab.2015.04.013
  • Rozman, U., & Kalčíková, G. (2022). Seeking for a perfect (non-spherical) microplastic particle – The most comprehensive review on microplastic laboratory research. Journal of Hazardous Materials, 424(Pt C), 127529. https://doi.org/10.1016/j.jhazmat.2021.127529
  • Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1249. https://doi.org/10.1002/widm.1249
  • Sauvé, S., & Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal, 8(1), 15. https://doi.org/10.1186/1752-153X-8-15
  • Shanle, E. K., & Xu, W. (2011). Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action. Chemical Research in Toxicology, 24(1), 6–19. https://doi.org/10.1021/tx100231n
  • Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., & Ren, X. (2019). Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution (Barking, Essex: 1987), 252(Pt A), 511–521. https://doi.org/10.1016/j.envpol.2019.05.102
  • Sifakis, S., Androutsopoulos, V. P., Tsatsakis, A. M., & Spandidos, D. A. (2017). Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environmental Toxicology and Pharmacology, 51, 56–70. https://doi.org/10.1016/j.etap.2017.02.024
  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), Article 484–489. https://doi.org/10.1038/nature16961
  • Storteboom, H., Arabi, M., Davis, J. G., Crimi, B., & Pruden, A. (2010). Tracking antibiotic resistance genes in the South Platte river basin using molecular signatures of urban, agricultural, and pristine sources. Environmental Science & Technology, 44(19), 7397–7404. https://doi.org/10.1021/es101657s
  • Su, X., Yang, L., Yang, K., Tang, Y., Wen, T., Wang, Y., Rillig, M. C., Rohe, L., Pan, J., Li, H., & Zhu, Y. (2022). Estuarine plastisphere as an overlooked source of N2O production. Nature Communications, 13(1), 1. https://doi.org/10.1038/s41467-022-31584-x
  • Su, Y., Zhang, Z., Wu, D., Zhan, L., Shi, H., & Xie, B. (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164, 114968. https://doi.org/10.1016/j.watres.2019.114968
  • Sun, X., Yuan, X., Jia, Y., Feng, L., Zhu, F., Dong, S., Liu, J., Kong, X., Tian, H., Duan, J., Ding, Z., Wang, S., & Xing, B. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9), 755–760. https://doi.org/10.1038/s41565-020-0707-4
  • Thomaidi, V. S., Stasinakis, A. S., Borova, V. L., & Thomaidis, N. S. (2016). Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis. Science of the Total Environment, 548–549, 280–288. https://doi.org/10.1016/j.scitotenv.2016.01.043
  • Tong, X., You, L., Zhang, J., Chen, H., Nguyen, V. T., He, Y., & Gin, K. Y.-H. (2021). A comprehensive modelling approach to understanding the fate, transport and potential risks of emerging contaminants in a tropical reservoir. Water Research, 200, 117298. https://doi.org/10.1016/j.watres.2021.117298
  • Vázquez-Canteli, J. R., & Nagy, Z. (2019). Reinforcement learning for demand response: A review of algorithms and modeling techniques. Applied Energy, 235, 1072–1089. https://doi.org/10.1016/j.apenergy.2018.11.002
  • Wang, F., Wong, C. S., Chen, D., Lu, X., Wang, F., & Zeng, E. Y. (2018). Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139, 208–219. https://doi.org/10.1016/j.watres.2018.04.003
  • Wang, M., Lai, X., Shao, L., & Li, L. (2018). Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. International Journal of Nanomedicine, ume 13, 4445–4459. https://doi.org/10.2147/IJN.S170745
  • Wang, X., Liu, L., Zhang, W., & Ma, X. (2021). Prediction of plant uptake and translocation of engineered metallic nanoparticles by machine learning. Environmental Science & Technology, 55(11), 7491–7500. https://doi.org/10.1021/acs.est.1c01603
  • Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environmental Science & Technology, 51(5), 2508–2518. https://doi.org/10.1021/acs.est.6b04806
  • Weaver, S., & Gleeson, M. P. (2008). The importance of the domain of applicability in QSAR modeling. Journal of Molecular Graphics and Modelling, 26(8), 1315–1326. https://doi.org/10.1016/j.jmgm.2008.01.002
  • Wei, W., Huang, Q.-S., Sun, J., Wang, J.-Y., Wu, S.-L., & Ni, B.-J. (2019). Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environmental Science & Technology, 53(5), 2509–2517. https://doi.org/10.1021/acs.est.8b07069
  • Winkler, D. A. (2016). Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicology and Applied Pharmacology, 299, 96–100. https://doi.org/10.1016/j.taap.2015.12.016
  • Yan, W., Xiao, Y., Yan, W., Ding, R., Wang, S., & Zhao, F. (2019). The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chemical Engineering Journal, 358, 1421–1437. https://doi.org/10.1016/j.cej.2018.10.128
  • Yaseen, Z. M. (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere, 277, 130126. https://doi.org/10.1016/j.chemosphere.2021.130126PMC
  • Yu, F., & Hu, X. (2022). Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects. Journal of Hazardous Materials, 432, 128730. https://doi.org/10.1016/j.jhazmat.2022.128730
  • Yu, F., Wei, C., Deng, P., Peng, T., & Hu, X. (2021). Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Science Advances, 7(22), eabf4130.https://doi.org/10.1126/sciadv.abf4130
  • Yu, H., Zhao, Z., & Cheng, F. (2021). Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere, 276, 130164. https://doi.org/10.1016/j.chemosphere.2021.130164
  • Yurtsever, M., & Yurtsever, U. (2019). Use of a convolutional neural network for the classification of microbeads in urban wastewater. Chemosphere, 216, 271–280. https://doi.org/10.1016/j.chemosphere.2018.10.084
  • Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., Ma, X., Marrone, B. L., Ren, Z. J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B. M., Xiao, X., Yu, X., Zhu, J.-J., & Zhang, H. (2021). Machine learning: New ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19), 12741–12754. https://doi.org/10.1021/acs.est.1c01339
  • Zhou, H., Beltrán, J. F., & Brito, I. L. (2021). Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Science Advances, 7(43), eabj5056. https://doi.org/10.1126/sciadv.abj5056
  • Zhu, X., & Goldberg, A. B. (2009). Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1–130. https://doi.org/10.2200/S00196ED1V01Y200906AIM006
  • Zhu, X., He, M., Sun, Y., Xu, Z., Wan, Z., Hou, D., Alessi, D. S., & Tsang, D. C. W. (2022). Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. Journal of Hazardous Materials, 423(Pt B), 127060. https://doi.org/10.1016/j.jhazmat.2021.127060
  • Zhu, X., Tsang, D. C. W., Wang, L., Su, Z., Hou, D., Li, L., & Shang, J. (2020). Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. Journal of Cleaner Production, 273, 122915. https://doi.org/10.1016/j.jclepro.2020.122915
  • Zhu, X., Wan, Z., Tsang, D. C. W., He, M., Hou, D., Su, Z., & Shang, J. (2021). Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption. Chemical Engineering Journal, 406, 126782. https://doi.org/10.1016/j.cej.2020.126782
  • Zorn, K. M., Foil, D. H., Lane, T. R., Russo, D. P., Hillwalker, W., Feifarek, D. J., Jones, F., Klaren, W. D., Brinkman, A. M., & Ekins, S. (2020). Machine learning models for estrogen receptor bioactivity and endocrine disruption prediction. Environmental Science & Technology, 54(19), 12202–12213. https://doi.org/10.1021/acs.est.0c03982

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.