889
Views
0
CrossRef citations to date
0
Altmetric
Reviews

A review on the heterogeneous oxidation of SO2 on solid atmospheric particles: Implications for sulfate formation in haze chemistry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1888-1911 | Published online: 31 Mar 2023

References

  • Adams, J. W., Rodriguez, D., & Cox, R. A. (2005). The uptake of SO2 on Saharan dust: A flow tube study. Atmospheric Chemistry and Physics, 5, 2679–2689. https://doi.org/10.5194/acp-5-2679-2005
  • Al-Hosney, H. A., & Grassian, V. H. (2004). Carbonic acid: An important intermediate in the surface chemistry of calcium carbonate. Journal of the American Chemical Society, 126(26), 8068–8069. https://doi.org/10.1021/ja0490774
  • Baldwin, A. C. (1982). Heterogeneous reactions of sulfur dioxide with carbonaceous particles. International Journal of Chemical Kinetics, 14(3), 269–277. https://doi.org/10.1002/kin.550140307
  • Baltrusaitis, J., Cwiertny, D. M., & Grassian, V. H. (2007). Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Physical Chemistry Chemical Physics, 9, 5542–5554. https://doi.org/10.1039/B709167B
  • Baltrusaitis, J., Jayaweera, P. M., & Grassian, V. H. (2011). Sulfur dioxide adsorption on TiO2 nanoparticles: Influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. Journal of Physical Chemistry C, 115(2), 492–500. https://pubs.acs.org/doi/abs/10.1021/jp108759b
  • Buseck, P. R., & Posfai, M. (1999). Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3372. https://doi.org/10.1073/pnas.96.7.3372
  • Chen, H., Nanayakkara, C. E., & Grassian, V. H. (2012). Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 112(11), 5919–5948. https://doi.org/10.1021/cr3002092
  • Chen, T., Chu, B., Ge, Y., Zhang, S., Ma, Q., He, H., & Li, S.-M. (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252, 236–244. https://doi.org/10.1016/j.envpol.2019.05.119
  • Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., & Sun, J. (2021). Photocatalytic oxidation of SO2 by TiO2: Aerosol formation and the key role of gaseous reactive oxygen species. Environmental Science & Technology, 55(14), 9784–9793. https://doi.org/10.1021/acs.est.1c01608
  • Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., & Su, H. (2016). Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2, e1601530. https://doi.org/10.1126/sciadv.1601530
  • Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., Spiro, P. A., & Savoie, D. L. (1996). A global three-dimensional model of tropospheric sulfate. Journal of Geophysical Research: Atmospheres, 101(D13), 18667–18690. https://doi.org/10.1029/96JD01221
  • Chu, B., Ma, Q., Duan, F., Ma, J., Jiang, J., He, K., & He, H. (2020). Atmospheric “Haze Chemistry”: concept and research prospects (in Chinese). Progress in Chemistry, 32(1), 1–4. https://doi.org/10.7536/PC191230
  • Chu, B., Wang, Y., Yang, W., Ma, J., Ma, Q., Zhang, P., Liu, Y., & He, H. (2019). Effects of NO2 and C3H6 on the heterogeneous oxidation of SO2 on TiO2 in the presence or absence of UV–Vis irradiation. Atmospheric Chemistry and Physics, 19(23), 14777–14790. https://doi.org/10.5194/acp-19-14777-2019
  • Chughtai, A. R., Atteya, M. M. O., Kim, J., Konowalchuk, B. K., & Smith, D. M. (1998). Adsorption and adsorbate interaction at soot particle surfaces. Carbon, 36(11), 1573–1589. https://doi.org/10.1016/S0008-6223(98)00116-X
  • Clegg, S. M., & Abbatt, J. P. D. (2001). Oxidation of SO2 by H2O2 on ice surfaces at 228 K: A sink for SO2 in ice clouds. Atmospheric Chemistry and Physics, 1(1), 73–78. https://doi.org/10.5194/acp-1-73-2001
  • Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., & Wallington, T. J. (2010). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V–heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 10(18), 9059–9223. https://doi.org/10.5194/acp-10-9059-2010
  • Datta, A., Cavell, R. G., Tower, R. W., & George, Z. M. (1985). Claus catalysis. 1. Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy. The Journal of Physical Chemistry, 89(3), 443–449. https://doi.org/10.1021/j100249a014
  • Deng, H., Lakey, P. S. J., Wang, Y., Li, P., Xu, J., Pang, H., Liu, J., Xu, X., Li, X., Wang, X., Zhang, Y., Shiraiwa, M., & Gligorovski, S. (2022). Daytime SO2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air. Science Advances, 8(39), eabq6830. https://doi.org/10.1126/sciadv.abq6830
  • Dupart, Y., King, S. M., Nekat, B., Nowak, A., Wiedensohler, A., Herrmann, H., David, G., Thomas, B., Miffre, A., & Rairoux, P. (2012). Mineral dust photochemistry induces nucleation events in the presence of SO2. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 20842–20847. https://doi.org/10.1073/pnas.121229710
  • Ervens, B. (2015). Modeling the processing of aerosol and trace gases in clouds and fogs. Chemical Reviews, 115(10), 4157–4198. https://doi.org/10.1021/cr5005887
  • Finlayson-Pitts, B. J. (2003). The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chemical Reviews, 103, 4801–4822. https://doi.org/10.1021/cr020653t
  • Finlayson-Pitts, B. J., & Pitts, J. N. (2000). Chemistry of the upper and lower atmosphere: Theory, experiments, and applications. Academic Press. https://doi.org/10.1016/B978-012257060-5/50000-9
  • Fu, H., Wang, X., Wu, H., Yin, Y., & Chen, J. (2007). Heterogeneous uptake and oxidation of SO2 on iron oxides. Journal of Physical Chemistry C, 111(16), 6077–6085. https://doi.org/10.1021/jp070087b
  • Fu, X., Wang, S. X., Xing, J., Zhang, X. Y., Wang, T., & Hao, J. M. (2017). Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOx emissions reduction in East China. Environmental Science & Technology Letters, 4, 221–227. https://doi.org/10.1021/acs.estlett.7b00143
  • Gao, X., Zhong, C., Tang, M., Ma, Q., & Liu, C. (2021). Key factors determining heterogeneous uptake kinetics of NO2 Onto alumina: Implication for the linkage between laboratory work and modeling study. Journal of Geophysical Research: Atmospheres, 126(19), e2021. https://doi.org/10.1029/2021JD034694
  • Gebel, M., Finlayson-Pitts, B. J., & Ganske, J. A. (2000). The uptake of SO2 on synthetic sea salt and some of its components. Geophysical Research Letters, 27, 887–890. https://doi.org/10.1029/1999GL011152
  • Gen, M., Zhang, R., Huang, D. D., Li, Y., & Chan, C. K. (2019). Heterogeneous SO2 oxidation in sulfate formation by photolysis of particulate nitrate. Environmental Science & Technology Letters, 6(2), 86–91. https://doi.org/10.1021/acs.estlett.8b00681
  • George, C., Ammann, M., D’Anna, B., Donaldson, D. J., & Nizkorodov, S. A. (2015). Heterogeneous photochemistry in the atmosphere. Chemical Reviews, 115(10), 4218–4258. https://doi.org/10.1021/cr500648z
  • Gieré, R., & Querol, X. (2010). Solid particulate matter in the atmosphere. Elements, 6, 215–222. https://doi.org/10.2113/gselements.6.4.215
  • Goodman, A. L., Li, P., Usher, C. R., & Grassian, V. H. (2001). Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles. Journal of Physical Chemistry A, 105(25), 6109–6120. https://doi.org/10.1021/jp004423z
  • Grassian, V. H. (2008). Surface science of complex environmental interfaces: Oxide and carbonate surfaces in dynamic equilibrium with water vapor. Surface Science, 602, 2955–2962. https://doi.org/10.1016/j.susc.2008.07.039
  • Gunz, D. W., & Hoffmann, M. R. (1990). Atmospheric chemistry of peroxides: A review. Atmospheric Environment. Part A. General Topics, 24(7), 1601–1633. https://doi.org/10.1016/0960-1686(90)90496-A
  • Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., & Zeng, L. (2014). Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17373–17378. https://doi.org/10.1073/pnas.1419604111
  • Han, L., Liu, X., Chen, Y., Xiang, X., Cheng, S., & Wang, H. (2021). Key factors influencing the formation of sulfate aerosol on the surface of mineral aerosols: Insights from laboratory simulations and ACSM measurements. Atmospheric Environment, 253, 118341. https://doi.org/10.1016/j.atmosenv.2021.118341
  • He, G., & He, H. (2016). DFT studies on the heterogeneous oxidation of SO2 by oxygen functional groups on graphene. Physical Chemistry Chemical Physics, 18(46), 31691–31697. https://doi.org/10.1039/C6CP06665H
  • He, G., & He, H. (2020). Water promotes the oxidation of SO2 by O2 over carbonaceous aerosols. Environmental Science & Technology, 54(12), 7070–7077. https://doi.org/10.1021/acs.est.0c00021
  • He, G., Ma, J., Chu, B., Hu, R., Li, H., Gao, M., Liu, Y., Wang, Y., Ma, Q., Xie, P., Zhang, G., Zeng, X. C., Francisco, J. S., & He, H. (2022). Generation and release of OH radicals from the reaction of H2O with O2 over soot. Angewandte Chemie International Edition, 61, e202201638. https://doi.org/10.1002/anie.202201638
  • He, G., Ma, J., & He, H. (2018). Role of carbonaceous aerosols in catalyzing sulfate formation. ACS Catalysis, 8(5), 3825–3832. https://doi.org/10.1021/acscatal.7b04195
  • He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., & Hao, J. (2014). Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 4, 4172. https://doi.org/10.1038/srep04172
  • He, X., Pang, S. F., Ma, J., & Zhang, Y. (2017). Influence of relative humidity on heterogeneous reactions of O3 and O3/SO2 with soot particles: Potential for environmental and health effects. Atmospheric Environment, 165, 198–206. https://doi.org/10.1016/j.atmosenv.2017.06.049
  • He, X., Wu, J., Ma, Z., Xi, X., & Zhang, Y. (2021). NH3-promoted heterogeneous reaction of SO2 to sulfate on α-Fe2O3 particles with coexistence of NO2 under different relative humidities. Atmospheric Environment, 262, 118622. https://doi.org/10.1016/j.atmosenv.2021.118622
  • Heine, N., Arata, C., Goldstein, A. H., Houle, F. A., & Wilson, K. R. (2018). Multiphase mechanism for the production of sulfuric acid from SO2 by criegee intermediates formed during the heterogeneous reaction of ozone with squalene. The Journal of Physical Chemistry Letters, 9(12), 3504–3510. https://doi.org/10.1021/acs.jpclett.8b01171
  • Huang, L., Zhao, Y., Li, H., & Chen, Z. (2015). Kinetics of heterogeneous reaction of sulfur dioxide on authentic mineral dust: Effects of relative humidity and hydrogen peroxide. Environmental Science & Technology, 49(18), 10797–10805. https://doi.org/10.1021/acs.est.5b03930
  • Huang, L., Zhao, Y., Li, H., & Chen, Z. (2016). Hydrogen peroxide maintains the heterogeneous reaction of sulfur dioxide on mineral dust proxy particles. Atmospheric Environment, 141, 552–559. https://doi.org/10.1016/j.atmosenv.2016.07.035
  • Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., … Prévôt, A. S. H. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222. https://doi.org/10.1038/nature13774
  • Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., & Zhang, H. (2012). A high-resolution ammonia emission inventory in China. Global Biogeochemical Cycles, 26, GB1030. https://doi.org/10.1029/2011GB004161
  • Huang, X., Song, Y., Zhao, C., Li, M., Zhu, T., Zhang, Q., & Zhang, X. (2014). Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China. Journal of Geophysical Research: Atmospheres, 119(24), 14,165–14,179. https://doi.org/10.1002/2014JD022301
  • Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Dingenen, R. V., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., … Wilson, J. (2005). Organic aerosol and global climate modelling: A review. Atmospheric Chemistry and Physics, 5, 1053–1123. https://doi.org/10.5194/acp-5-1053-2005
  • Kong, L. D., Zhao, X., Sun, Z. Y., Yang, Y. W., Fu, H. B., Zhang, S. C., Cheng, T. T., Yang, X., Wang, L., & Chen, J. M. (2014). The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite. Atmospheric Chemistry and Physics, 14(17), 9451–9467. https://doi.org/10.5194/acp-14-9451-2014
  • Kulmala, M., Pirjola, L., & Mäkelä, J. M. (2000). Stable sulphate clusters as a source of new atmospheric particles. Nature, 404(6773), 66–69. https://doi.org/10.1038/35003550
  • Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., & Finlayson-Pitts, B. J. (2003). Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science, 301(5631), 340–344. https://doi.org/10.1126/science.108537
  • Lee, M., Heikes, B. G., & O’Sullivan, D. W. (2000). Hydrogen peroxide and organic hydroperoxide in the troposphere: A review. Atmospheric Environment, 34(21), 3475–3494. https://doi.org/10.1016/S1352-2310(99)00432-X
  • Lee, Y. N., & Schwartz, S. E. (1983). Kinetics of oxidation of aqueous sulfur(IV) by nitrogen dioxide. (Vol. 1). Elsevier.
  • Li, H., Dong, F., Bian, L., Huo, T., He, X., Zheng, F., Lv, Z., Jiang, L., & Li, B. (2021). Heterogeneous oxidation mechanism of SO2 on γ-Al2O3 (110) catalyst by H2O2: A first-principle study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125777. https://doi.org/10.1016/j.colsurfa.2020.125777
  • Li, J., Shang, J., & Zhu, T. (2011). Heterogeneous reactions of SO2 on ZnO particle surfaces. Science China Chemistry, 54(1), 161–166. https://doi.org/10.1007/s11426-010-4167-9
  • Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, J. L., & Ding, J. (2006). Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate. Atmospheric Chemistry and Physics, 6(9), 2453–2464. https://doi.org/10.5194/acp-6-2453-2006
  • Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, S., Li, H. J., Zhu, L. H., & Xu, B. Y. (2007). Heterogeneous oxidation of sulfur dioxide by ozone on the surface of sodium chloride and its mixtures with other components. Journal of Geophysical Research: Atmospheres, 112(D18), D18301. https://doi.org/10.1029/2006JD008207
  • Liu, C., Ma, Q. X., Liu, Y. C., Ma, J. Z., & He, H. (2012). Synergistic reaction between SO2 and NO2 on mineral oxides: A potential formation pathway of sulfate aerosol. Physical Chemistry Chemical Physics, 14(5), 1668–1676. https://doi.org/10.1039/C1CP22217A
  • Liu, C., Wang, H., Ma, Q., Ma, J., Wang, Z., Liang, L., Xu, W., Zhang, G., Zhang, X., Wang, T., & He, H. (2020). Efficient conversion of NO to NO2 on SO2-aged MgO under atmospheric conditions. Environmental Science & Technology, 54(19), 11848–11856. https://doi.org/10.1021/acs.est.0c05071
  • Liu, T., Chan, A. W. H., & Abbatt, J. P. D. (2021). Multiphase oxidation of sulfur dioxide in aerosol particles: Implications for sulfate formation in polluted environments. Environmental Science & Technology, 55(8), 4227–4242. https://doi.org/10.1021/acs.est.0c06496
  • Liu, Y., He, G., Chu, B., Ma, Q., & He, H. (2022). Atmospheric heterogeneous reactions on soot: A review. Fundamental Research, in press. https://doi.org/10.1016/j.fmre.2022.02.012
  • Liu, Y., Wang, T., Fang, X., Deng, Y., Cheng, H., Bacha, A.-U.-R., Nabi, I., & Zhang, L. (2020). Brown carbon: An underlying driving force for rapid atmospheric sulfate formation and haze event. Science of the Total Environment, 734, 139415. https://doi.org/10.1016/j.scitotenv.2020.139415
  • Lizzio, A. A., & DeBarr, J. A. (1997). Mechanism of SO2 removal by carbon. Energy & Fuels, 11(2), 284–291. https://doi.org/10.1021/ef960197+
  • Lo, J. M. H., Ziegler, T., & Clark, P. D. (2010). SO2 adsorption and transformations on γ-Al2O3 surfaces: A density functional theory study. Journal of Physical Chemistry C, 114(23), 10444–10454. https://doi.org/10.1021/jp910895g
  • Ma, Q., He, H., Liu, Y., Liu, C., & Grassian, V. H. (2013). Heterogeneous and multiphase formation pathways of gypsum in the atmosphere. Physical Chemistry Chemical Physics, 15, 19196–19204. https://doi.org/10.1039/c3cp53424c
  • Ma, Q., Liu, Y., Liu, C., Ma, J., & He, H. (2012). A case study of Asian dust storm particles: Chemical composition, reactivity to SO2 and hygroscopic properties. Journal of Environmental Sciences, 24(1), 62–71. https://doi.org/10.1016/S1001-0742(11)60729-8
  • Ma, Q., Wang, L., Chu, B., Ma, J., & He, H. (2019). Contrary role of H2O and O2 in the kinetics of heterogeneous photochemical reactions of SO2 on TiO2. Journal of Physical Chemistry A, 123(7), 1311–1318. https://doi.org/10.1021/acs.jpca.8b11433
  • Ma, Q., Wang, T., Liu, C., He, H., Wang, Z., Wang, W., & Liang, Y. (2017). SO2 initiates the efficient conversion of NO2 to HONO on MgO surface. Environmental Science & Technology, 51(7), 3767–3775. https://doi.org/10.1021/acs.est.6b05724
  • Ma, Q. X., Liu, Y. C., & He, H. (2008). Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina. Journal of Physical Chemistry A, 112(29), 6630–6635. https://doi.org/10.1021/jp802025z
  • Mathieu, Y., Tzanis, L., Soulard, M., Patarin, J., Vierling, M., & Molière, M. (2013). Adsorption of SOx by oxide materials: A review. Fuel Processing Technology, 114, 81–100. https://doi.org/10.1016/j.fuproc.2013.03.019
  • Mauldin, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V. M., & Kulmala, M. (2012). A new atmospherically relevant oxidant of sulphur dioxide. Nature, 488(7410), 193–196. https://doi.org/10.1038/nature11278
  • McArdle, J. V., & Hoffmann, M. R. (1983). Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH. The Journal of Physical Chemistry, 87(26), 5425–5429. https://doi.org/10.1021/j150644a024
  • Nanayakkara, C. E., Pettibone, J., & Grassian, V. H. (2012). Sulfur dioxide adsorption and photooxidation on isotopically-labeled titanium dioxide nanoparticle surfaces: Roles of surface hydroxyl groups and adsorbed water in the formation and stability of adsorbed sulfite and sulfate. Physical Chemistry Chemical Physics, 14(19), 6957–6966. https://doi.org/10.1039/c2cp23684b
  • Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Petäjä, T., & Qi, X. (2014). Polluted dust promotes new particle formation and growth. Scientific Reports, 4, 6634. https://doi.org/10.1038/srep06634
  • Nienow, A. M., & Roberts, J. T. (2006). Heterogeneous chemistry of carbon aerosols. Annual Review of Physical Chemistry, 57(1), 105–128. https://doi.org/10.1146/annurev.physchem.57.032905.104525
  • Novakov, T., Chang, S. G., & Harker, A. B. (1974). Sulfates as pollution particulates: catalytic formation on carbon (soot) particles. Science, 186(4160), 259–261. https://doi.org/10.1126/science.186.4160.259
  • Novakov, T., & Rosen, H. (2013). The black carbon story: Early history and new perspectives. Ambio, 42(7), 840–851. https://doi.org/10.1007/s13280-013-0392-8
  • Orrling, D., Fitzgerald, E., Ivanov, A., & Molina, M. (2011). Enhanced sulfate formation on ozone-exposed soot. Journal of Aerosol Science, 42(9), 615–620. https://doi.org/10.1016/j.jaerosci.2011.04.004
  • Park, J., Jang, M., & Yu, Z. (2017). Heterogeneous photooxidation of SO2 in the presence of two different mineral dust particles: Gobi and Arizona dust. Environmental Science & Technology, 51(17), 9605–9613. https://doi.org/10.1021/acs.est.7b00588
  • Park, J. Y., & Jang, M. (2016). Heterogeneous photooxidation of sulfur dioxide in the presence of airborne mineral dust particles. RSC Advances, 6(63), 58617–58627. https://doi.org/10.1039/c6ra09601h
  • Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J., Donaldson, D. J., & George, C. (2016). Organosulfate formation through the heterogeneous reaction of sulfur dioxide with unsaturated fatty acids and long-chain alkenes. Angewandte Chemie International Edition, 55(35), 10336–10339. https://doi.org/10.1002/anie.201605266
  • Patel, C. K. N., Burkhardt, E. G., & Lambert, C. A. (1974). Acid rain: A serious regional environmental problem. Science, 184, 1176–1179. https://doi.org/10.1126/science.184.4142.117
  • Pathak, R. K., Wu, W. S., & Wang, T. (2009). Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics, 9(5), 1711–1722. https://doi.org/10.5194/acp-9-1711-2009
  • Pósfai, M., Anderson, J. R., Buseck, P. R., & Sievering, H. (1999). Soot and sulfate aerosol particles in the remote marine troposphere. Journal of Geophysical Research: Atmospheres, 104(D17), 21685–21693. https://doi.org/10.1029/1999JD900208
  • Ravishankara, A. R. (1997). Heterogeneous and multiphase chemistry in the troposphere. Science, 276(5315), 1058–1065. https://doi.org/10.1126/science.276.5315.1058
  • Rossi, M. J. (2003). Heterogeneous reactions on salts. Chemical Reviews, 103(12), 4823–4882. https://doi.org/10.1021/cr020507n
  • Rubasinghege, G., Elzey, S., Baltrusaitis, J., Jayaweera, P. M., & Grassian, V. H. (2010). Reactions on atmospheric dust particles: Surface photochemistry and size-dependent nanoscale redox chemistry. The Journal of Physical Chemistry Letters, 1(11), 1729–1737. https://doi.org/10.1021/jz100371d
  • Rubasinghege, G., & Grassian, V. H. (2013). Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chemical Communications, 49(30), 3071–3094. https://doi.org/10.1039/c3cc38872g
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. (3rd ed.). John Wiley & Sons.
  • Shang, J., Li, J., & Zhu, T. (2010). Heterogeneous reaction of SO2 on TiO2 particles. Science China Chemistry, 53(12), 2637–2643. https://doi.org/10.1007/s11426-010-4160-3
  • Shang, J., Passananti, M., Dupart, Y., Ciuraru, R., Tinel, L., Rossignol, S., Perrier, S., Zhu, T., & George, C. (2016). SO2 uptake on oleic acid: A new formation pathway of organosulfur compounds in the atmosphere. Environmental Science & Technology Letters, 3(2), 67–72. https://doi.org/10.1021/acs.estlett.6b00006
  • Shen, X., Zhao, Y., Chen, Z., & Huang, D. (2013). Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmospheric Environment, 68, 297–314. https://doi.org/10.1016/j.atmosenv.2012.11.027
  • Sievering, H., Boatman, J., Gorman, E., Kim, Y., Anderson, L., Ennis, G., Luria, M., & Pandis, S. (1992). Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature, 360(6404), 571–573. https://doi.org/10.1038/360571a0
  • Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., & Delgado Arias, S. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11(3), 1101–1116. https://doi.org/10.5194/acp-11-1101-2011
  • Srivastava, R. K., & Jozewicz, W. (2001). Flue gas desulfurization: The state of the art. Journal of the Air & Waste Management Association, 51(12), 1676–1688. https://doi.org/10.1080/10473289.2001.10464387
  • Stipp, S. L. S. (1999). Toward a conceptual model of the calcite surface: Hydration, hydrolysis, and surface potential. Geochimica Et Cosmochimica Acta, 63(19-20), 3121–3131. https://doi.org/10.1016/S0016-7037(99)00239-2
  • Stockwell, W. R., & Calvert, J. G. (1983). The mechanism of the HO-SO2 reaction. Atmospheric Environment, 17(11), 2231–2235. https://doi.org/10.1016/0004-6981(83)90220-2
  • Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., & Prather, K. A. (2007). Direct observations of the atmospheric processing of Asian mineral dust. Atmospheric Chemistry and Physics, 7(5), 1213–1236. https://doi.org/10.5194/acp-7-1213-2007
  • Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., & Yin, Y. (2014). Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research: Atmospheres, 119(7), 4380–4398. https://doi.org/10.1002/2014JD021641
  • Tang, M., Huang, X., Lu, K., Ge, M.-F., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., Song, W., Ding, X., Bi, X., & Wang, X. (2017). Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and Physics, 17(19), 11727–11777. https://doi.org/10.5194/acp-17-11727-2017
  • Tang, M. J., Cox, R. A., & Kalberer, M. (2014). Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic Compounds. Atmospheric Chemistry and Physics, 14(17), 9233–9247. https://doi.org/10.5194/acp-14-9233-2014
  • Tang, M. J., Cziczo, D. J., & Grassian, V. H. (2016). Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation and ice nucleation. Chemical Reviews, 116, 4205–4259. https://doi.org/10.1021/acs.chemrev.5b00529
  • Tian, R., Ma, X., Sha, T., Pan, X., & Wang, Z. (2021). Exploring dust heterogeneous chemistry over China: Insights from field observation and GEOS-Chem simulation. Science of the Total Environment, 798, 149307. https://doi.org/10.1016/j.scitotenv.2021.149307
  • Ullerstam, M., Johnson, M. S., Vogt, R., & Ljungstrom, E. (2003). DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust. Atmospheric Chemistry and Physics, 3, 2043–2051. https://doi.org/10.5194/acp-3-2043-2003
  • Ullerstam, M., Vogt, R., Langer, S., & Ljungström, E. (2002). The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Physical Chemistry Chemical Physics, 4(19), 4694–4699. https://doi.org/10.1039/B203529B
  • Usher, C. R., Al-Hosney, H., Carlos-Cuellar, S., & Grassian, V. H. (2002). A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. Journal of Geophysical Reseach: Atmosphere, 107(10), 1029. https://doi.org/10.1029/2002JD002051
  • Usher, C. R., Michel, A. E., & Grassian, V. H. (2003). Reactions on mineral dust. Chemical Reviews, 103(12), 4883–4939. https://doi.org/10.1021/cr020657y
  • Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., … Molina, M. J. (2016). Persistent sulfate formation from London fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13630–13635. https://doi.org/10.1073/pnas.161654011
  • Wang, H., Zhong, C., Ma, Q., Ma, J., & He, H. (2020). The adsorption and oxidation of SO2 on MgO surface: Experimental and DFT calculation studies. Environmental Science: Nano, 7(4), 1092–1101. https://doi.org/10.1039/C9EN01474H
  • Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang, D. D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J. R., … Jacob, D. J. (2020). Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 11(1), 2844. https://doi.org/10.1038/s41467-020-16683-x
  • Wang, T., Liu, Y. Y., Deng, Y., Cheng, H. Y., Fang, X. Z., & Zhang, L. W. (2020). Heterogeneous formation of sulfur species on manganese oxides: Effects of particle type and moisture condition. Journal of Physical Chemistry A, 124(36), 7300–7312. https://doi.org/10.1021/acs.jpca.0c04483
  • Wang, T., Liu, Y. Y., Deng, Y., Cheng, H. Y., Yang, Y., Li, K. J., Fang, X. Z., & Zhang, L. W. (2020). Irradiation intensity dependent heterogeneous formation of sulfate and dissolution of ZnO nanoparticles. Environmental Science: Nano, 7(1), 327–338. https://doi.org/10.1039/C9EN01148J
  • Wang, W., Liu, M., Wang, T., Song, Y., Zhou, L., Cao, J., Hu, J., Tang, G., Chen, Z., Li, Z., Xu, Z., Peng, C., Lian, C., Chen, Y., Pan, Y., Zhang, Y., Sun, Y., Li, W., Zhu, T., … Ge, M. (2021). Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 12(1), 1993. https://doi.org/10.1038/s41467-021-22091-6
  • Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., & Xin, J. (2014). Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 57(1), 14–25. https://doi.org/10.1007/s11430-013-4773-4
  • Wang, Y. X., Zhang, Q. Q., Jiang, J. K., Zhou, W., Wang, B. Y., He, K. B., Duan, F. K., Zhang, Q., Philip, S., & Xie, Y. Y. (2014). Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. Journal of Geophysical Research: Atmospheres, 119(17), 10,425–10,440. https://doi.org/10.1002/2013JD021426
  • Wu, L. Y., Tong, S. R., Zhou, L., Wang, W. G., & Ge, M. F. (2013). Synergistic effects between SO2 and HCOOH on α-Fe2O3. Journal of Physical Chemistry A, 117, 3972–3979. https://doi.org/10.1021/jp400195f
  • Xu, H., Ren, Y. A., Zhang, W., Meng, W., Yun, X., Yu, X., Li, J., Zhang, Y., Shen, G., Ma, J., Li, B., Cheng, H., Wang, X., Wan, Y., & Tao, S. (2021). Updated global black carbon emissions from 1960 to 2017: Improvements, trends, and drivers. Environmental Science & Technology, 55(12), 7869–7879. https://doi.org/10.1021/acs.est.1c03117
  • Xu, W., Kuang, Y., Liang, L., He, Y., Cheng, H., Bian, Y., Tao, J., Zhang, G., Zhao, P., Ma, N., Zhao, H., Zhou, G., Su, H., Cheng, Y., Xu, X., Shao, M., & Sun, Y. (2020). Dust-dominated coarse particles as a medium for rapid secondary organic and inorganic aerosol formation in highly polluted air. Environmental Science & Technology, 54(24), 15710–15721. https://doi.org/10.1021/acs.est.0c07243
  • Xu, W., Li, Q., Shang, J., Liu, J., Feng, X., & Zhu, T. (2015). Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential. Journal of Environmental Sciences, 36, 56–62. https://doi.org/10.1016/j.jes.2015.02.014
  • Xue, J., Yu, X., Yuan, Z., Griffith, S. M., Lau, A. K. H., Seinfeld, J. H., & Yu, J. Z. (2019). Efficient control of atmospheric sulfate production based on three formation regimes. Nature Geoscience, 12(12), 977–982. https://doi.org/10.1038/s41561-019-0485-5
  • Yang, N., Tsona, N. T., Cheng, S., Li, S., Xu, L., Wang, Y., Wu, L., & Du, L. (2020). Competitive reactions of SO2 and acetic acid on α-Al2O3 and CaCO3 particles. Science of the Total Environment, 699, 134362. https://doi.org/10.1016/j.scitotenv.2019.134362
  • Yang, W., Chen, M., Xiao, W., Guo, Y., Ding, J., Zhang, L., & He, H. (2018). Molecular insights into NO-promoted sulfate formation on model TiO2 nanoparticles with different exposed facets. Environmental Science & Technology, 52(24), 14110–14118. https://doi.org/10.1021/acs.est.8b02688
  • Yang, W., He, H., Ma, Q., Ma, J., Liu, Y., Liu, P., & Mu, Y. (2016). Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Physical Chemistry Chemical Physics, 18(2), 956–964. https://doi.org/10.1039/c5cp06144j
  • Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., & He, H. (2019). The effect of water on the heterogeneous reactions of SO2 and NH3 on the surfaces of α-Fe2O3 and γ-Al2O3. Environmental Science: Nano, 6(9), 2749–2758. https://doi.org/10.1039/C9EN00574A
  • Yang, W., Zhang, J., Ma, Q., Zhao, Y., Liu, Y., & He, H. (2017). Heterogeneous reaction of SO2 on manganese oxides: The effect of crystal structure and relative humidity. Scientific Reports, 7(1), 4550. https://doi.org/10.1038/s41598-017-04551-6
  • Yang, W. W., Ma, Q. X., Liu, Y. C., Ma, J. Z., Chu, B. W., Wang, L., & He, H. (2018). Role of NH3 in the heterogeneous formation of secondary inorganic aerosols on mineral oxides. Journal of Physical Chemistry A, 122(30), 6311–6320. https://doi.org/10.1021/acs.jpca.8b05130
  • Yao, L., Fan, X., Yan, C., Kurtén, T., Daellenbach, K. R., Li, C., Wang, Y., Guo, Y., Dada, L., Rissanen, M. P., Cai, J., Tham, Y. J., Zha, Q., Zhang, S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J., … Bianchi, F. (2020). Unprecedented ambient sulfur trioxide (SO3) detection: Possible formation mechanism and atmospheric implications. Environmental Science & Technology Letters, 7(11), 809–818. https://doi.org/10.1021/acs.estlett.0c00615
  • Ye, J., Abbatt, J. P. D., & Chan, A. W. H. (2018). Novel pathway of SO2 oxidation in the atmosphere: Reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. Atmospheric Chemistry and Physics, 18(8), 5549–5565. https://doi.org/10.5194/acp-18-5549-2018
  • Yu, T., Zhao, D. F., Song, X. J., & Zhu, T. (2018). NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles. Atmospheric Chemistry and Physics, 18(9), 6679–6689. https://doi.org/10.5194/acp-18-6679-2018
  • Yu, Z., & Jang, M. (2018). Simulation of heterogeneous photooxidation of SO2 and NOx in the presence of Gobi Desert dust particles under ambient sunlight. Atmospheric Chemistry and Physics, 18(19), 14609–14622. https://doi.org/10.5194/acp-18-14609-2018
  • Yu, Z., Jang, M., & Park, J. (2017). Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2. Atmospheric Chemistry and Physics, 17(16), 10001–10017. https://doi.org/10.5194/acp-17-10001-2017
  • Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y., Zhao, J., Liu, C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang, A. L., Ji, Y., Wang, G., Hu, M., Molina, M. J., & Zhang, R. (2020). An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 3960–3966. https://doi.org/10.1073/pnas.1919343117
  • Zhang, L., Gong, S., Zhao, T., Zhou, C., Wang, Y., Li, J., Ji, D., He, J., Liu, H., Gui, K., Guo, X., Gao, J., Shan, Y., Wang, H., Wang, Y., Che, H., & Zhang, X. (2021). Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China. Geoscientific Model Development, 14(2), 703–718. https://doi.org/10.5194/gmd-14-703-2021
  • Zhang, P., Chen, T., Liu, J., Liu, C., Ma, J., Ma, Q., Chu, B., & He, H. (2019). Impacts of SO2, relative humidity, and seed acidity on secondary organic aerosol formation in the ozonolysis of butyl vinyl ether. Environmental Science & Technology, 53(15), 8845–8853. https://doi.org/10.1021/acs.est.9b02702
  • Zhang, P., Chen, T., Ma, Q., Chu, B., Wang, Y., Mu, Y., Yu, Y., & He, H. (2022). Diesel soot photooxidation enhances the heterogeneous formation of H2SO4. Nature Communications, 13(1), 5364. https://doi.org/10.1038/s41467-022-33120-3
  • Zhang, S., Xing, J., Sarwar, G., Ge, Y., He, H., Duan, F., Zhao, Y., He, K., Zhu, L., & Chu, B. (2019). Parameterization of heterogeneous reaction of SO2 to sulfate on dust with coexistence of NH3 and NO2 under different humidity conditions. Atmospheric Environment, 208, 133–140. https://doi.org/10.1016/j.atmosenv.2019.04.004
  • Zhang, X., Zhuang, G., Chen, J., Wang, Y., Wang, X., An, Z., & Zhang, P. (2006). Heterogeneous reactions of sulfur dioxide on typical mineral particles. Journal of Physical Chemistry B, 110(25), 12588–12596. https://doi.org/10.1021/jp0617773
  • Zhang, Y., Bao, F., Li, M., Chen, C., & Zhao, J. (2019). Nitrate-enhanced oxidation of SO2 on mineral dust: A vital role of a proton. Environmental Science & Technology, 53(17), 10139–10145. https://doi.org/10.1021/acs.est.9b01921
  • Zhang, Y., Bao, F., Li, M., Xia, H., Huang, D., Chen, C., & Zhao, J. (2020). Photoinduced uptake and oxidation of SO2 on Beijing urban PM2.5. Environmental Science & Technology, 54(23), 14868–14876. https://doi.org/10.1021/acs.est.0c01532
  • Zhanzakova, A., Tong, S., Yang, K., Chen, L., Li, K., Fu, H., Wang, L., & Kong, L. (2019). The effects of surfactants on the heterogeneous uptake of sulfur dioxide on hematite. Atmospheric Environment, 213, 548–557. https://doi.org/10.1016/j.atmosenv.2019.06.050
  • Zhao, D., Song, X., Zhu, T., Zhang, Z., Liu, Y., & Shang, J. (2018). Multiphase oxidation of SO2 by NO2 on CaCO3 particles. Atmospheric Chemistry and Physics, 18(4), 2481–2493. https://doi.org/10.5194/acp-18-2481-2018
  • Zhao, H., Sheng, X., Fabris, S., Salahub, D. R., Sun, T., & Du, L. (2018). Heterogeneous reactions of SO2 on the hematite(0001) surface. The Journal of Chemical Physics, 149(19), 194703. https://doi.org/10.1063/1.5037847
  • Zhao, X., Kong, L., Sun, Z. Y., Ding, X., Cheng, T. T., Yang, X., & Chen, J. (2015). Interactions between heterogeneous uptake and adsorption of sulfur dioxide and acetaldehyde on hematite. Journal of Physical Chemistry A, 119(17), 4001–4008. https://doi.org/10.1021/acs.jpca.5b01359
  • Zhao, Y., Liu, Y., Ma, J., Ma, Q., & He, H. (2017). Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. Atmospheric Environment, 152, 465–476. https://doi.org/10.1016/j.atmosenv.2017.01.005
  • Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., & Kimoto, T. (2015). Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics, 15(4), 2031–2049. https://doi.org/10.5194/acp-15-2031-2015
  • Zhu, M., Jiang, B., Li, S., Yu, Q., Yu, X., Zhang, Y., Bi, X., Yu, J., George, C., Yu, Z., & Wang, X. (2019). Organosulfur compounds formed from heterogeneous reaction between SO2 and particulate-bound unsaturated fatty acids in ambient air. Environmental Science & Technology Letters, 6(6), 318–322. https://doi.org/10.1021/acs.estlett.9b00218

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.