1,509
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Biochar-derived dissolved organic matter (BDOM) and its influence on soil microbial community composition, function, and activity: A review

, , , , , , , & ORCID Icon show all
Pages 1912-1934 | Published online: 31 Mar 2023

References

  • Abdelrahman, H. M., Olk, D. C., Dinnes, D., Ventrella, D., Miano, T., & Cocozza, C. (2016). Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. Journal of Soils and Sediments, 16, 2375–2384.
  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165
  • Ali, A., Shaheen, S. M., Guo, D., Li, Y., Xiao, R., Wahid, F., Azeem, M., Sohail, K., Zhang, T., & Rinklebe, J. (2020). Apricot shell-and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environmental Pollution, 264, 114773.
  • Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, 309–320.
  • Andersson, S., Nilsson, S. I., & Saetre, P. (2000). Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry, 32(1), 1–10. https://doi.org/10.1016/S0038-0717(99)00103-0
  • Azeem, M., Ali, A., Arockiam Jeyasundar, P. G. S., Bashir, S., Hussain, Q., Wahid, F., Ali, E. F., Abdelrahman, H., Li, R., Antoniadis, V., Rinklebe, J., Shaheen, S. M., Li, G., & Zhang, Z. (2021). Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere, 282, 131016. https://doi.org/10.1016/j.chemosphere.2021.131016
  • Azeem, M., Ali, A., Arockiam Jeyasundar, P. G. S., Li, Y., Abdelrahman, H., Latif, A., Li, R., Basta, N., Li, G., Shaheen, S. M., Rinklebe, J., & Zhang, Z. (2021). Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environmental Pollution, 277, 116800. https://doi.org/10.1016/j.envpol.2021.116800
  • Azeem, M., Hassan, T. U., Tahir, M. I., Ali, A., Jeyasundar, P., Hussain, Q., Bashir, S., Mehmood, S., & Zhang, Z. (2021). Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology, 157, 103732. https://doi.org/10.1016/j.apsoil.2020.103732
  • Azeem, M., Hayat, R., Hussain, Q., Ahmed, M., Pan, G., Ibrahim Tahir, M., Imran, M., Irfan., & M., Mehmood-Ul-Hassan. (2019). Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil Tillage Research, 186, 172–182. https://doi.org/10.1016/j.still.2018.10.007
  • Azeem, M., Hayat, R., Hussain, Q., Tahir, M. I., Imran, M., Abbas, Z., Sajid, M., Latif, A., & Irfan, M. (2019). Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arabian Journal of Geosciences, 12(10), 311. https://doi.org/10.1007/s12517-019-4482-1
  • Azeem, M., Sun, D., Crowley, D., Hayat, R., Hussain, Q., Ali, A., Tahir, M. I., Jeyasundar, P., Rinklebe, J., & Zhang, Z. (2020). Crop types have stronger effects on soil microbial communities and functionalities than biochar or fertilizer during two cycles of legume-cereal rotations of dry land. The Science of the Total Environment, 715, 136958. https://doi.org/10.1016/j.scitotenv.2020.136958
  • Bolan, N. S., Adriano, D. C., & De-la-Luz, M. (2004). Dynamics and environmental significance of dissolved organic matter in soil. SuperSoil: 3rd Australian New Zealand Soils Conference, University of Sydney, Australia. CDROM. www.regional.org.au/au/asssi/
  • Bruun, E. W., Ambus, P., Egsgaard, H., & Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73–79. https://doi.org/10.1016/j.soilbio.2011.11.019
  • Buss, W., & Mašek, O. (2016). High-VOC biochar—Effectiveness of post-treatment measures and potential health risks related to handling and storage. Environmental Science and Pollution Research, 23(19), 19580–19589. https://doi.org/10.1007/s11356-016-7112-4
  • Buss, W., Mašek, O., Graham, M., & Wüst, D. (2015). Inherent organic compounds in biochar–Their content, composition and potential toxic effects. Journal of Environmental Management, 156, 150–157. https://doi.org/10.1016/j.jenvman.2015.03.035
  • Cai, F., Feng, Z., & Zhu, L. (2018). Effects of biochar on CH4 emission with straw application on paddy soil. Journal of Soils and Sediments, 18(2), 599–609. https://doi.org/10.1007/s11368-017-1761-x
  • Cai, W., Du, Z.-L., Zhang, A.-P., He, C., Shi, Q., Tian, L.-Q., Zhang, P., Li, L.-P., & Wang, J.-J. (2020). Long-term biochar addition alters the characteristics but not the chlorine reactivity of soil-derived dissolved organic matter. Water Research, 185, 116260. https://doi.org/10.1016/j.watres.2020.116260
  • Case, S. D. C., McNamara, N. P., Reay, D. S., & Whitaker, J. (2014). Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy, 6(1), 76–89. https://doi.org/10.1111/gcbb.12052
  • Chen, B., Zhao, M., Liu, C., Feng, M., Ma, S., Liu, R., & Chen, K. (2020). Comparison of copper binding properties of DOM derived from fresh and pyrolyzed biomaterials: Insights from multi-spectroscopic investigation. The Science of the Total Environment, 721, 137827.
  • Chen, G., Wang, X., & Zhang, R. (2019). Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes. Soil and Tillage Research, 186, 322–332. https://doi.org/10.1016/j.still.2018.11.007
  • Chen, S., Ding, Y., Xia, X., Feng, X., Liu, X., Zheng, J., Drosos, M., Cheng, K., Bian, R., Zhang, X., Li, L., & Pan, G. (2021). Amendment of straw biochar increased molecular diversity and enhanced preservation of plant derived organic matter in extracted fractions of a rice paddy. Journal of Environmental Management, 285, 112104. https://doi.org/10.1016/j.jenvman.2021.112104
  • Chen, T., Liu, R., & Scott, N. R. (2016). Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—Biochar, syngas and bio-oil. Fuel Processing Technology, 142, 124–134. https://doi.org/10.1016/j.fuproc.2015.09.034
  • Cheng, H., Hill, P. W., Bastami, M. S., & Jones, D. L. (2017). Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy, 9(6), 1110–1121. https://doi.org/10.1111/gcbb.12402
  • Cincotta, M. M., Perdrial, J. N., Shavitz, A., Libenson, A., Landsman-Gerjoi, M., Perdrial, N., Armfield, J., Adler, T., & Shanley, J. B. (2019). Soil aggregates as a source of dissolved organic carbon to streams: An experimental study on the effect of solution chemistry on water extractable carbon. Frontiers in Environmental Science7, 172.
  • Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. J. A. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3, 275–293.
  • Darko, B., Jiang, J.-Q., Kim, H., Machala, L., Zboril, R., & Sharma, V. K. (2014). Advances made in understanding the interaction of ferrate (VI) with natural organic matter in water. In Water reclamation and sustainability (pp.183–197). Elsevier.
  • Demisie, W., & Zhang, M. (2015). Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research, 10, 755–766.
  • Ding, Y., Shi, Z., Ye, Q., Liang, Y., Liu, M., Dang, Z., Wang, Y., & Liu, C. (2020). Chemodiversity of soil dissolved organic matter. Environmental Science & Technology, 54(10), 6174–6184. https://doi.org/10.1021/acs.est.0c01136
  • Dong, W., Bian, Y., Liang, L., & Gu, B. (2011). Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique. Environmental Science & Technology, 45(8), 3576–3583. https://doi.org/10.1021/es104207g
  • Dong, X., Singh, B. P., Li, G., Lin, Q., & Zhao, X. (2019). Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition. Soil Use and Management, 35(3), 466–477. https://doi.org/10.1111/sum.12474
  • Dutta, S., He, M., Xiong, X., & Tsang, D. C. (2021). Sustainable management and recycling of food waste anaerobic digestate: A review. Bioresource Technology, 341, 125915. https://doi.org/10.1016/j.biortech.2021.125915
  • El-Naggar, A., El-Naggar, A. H., Shaheen, S. M., Sarkar, B., Chang, S. X., Tsang, D. C., Rinklebe, J., & Ok, Y. S. (2019). Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management, 241, 458–467. https://doi.org/10.1016/j.jenvman.2019.02.044
  • El-Naggar, A., Lee, M.-H., Hur, J., Lee, Y. H., Igalavithana, A. D., Shaheen, S. M., Ryu, C., Rinklebe, J., Tsang, D. C. W., & Ok, Y. S. (2020). Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. The Science of the Total Environment, 698, 134112. https://doi.org/10.1016/j.scitotenv.2019.134112
  • Eykelbosh, A. J., Johnson, M. S., & Couto, E. G. (2015). Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. Journal of Environmental Management, 149, 9–16. https://doi.org/10.1016/j.jenvman.2014.09.033
  • Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., Singh, B. P., Baumann, K., Krull, E. S., & Baldock, J. A. (2013). Microbial utilisation of biochar-derived carbon. The Science of the Total Environment, 465, 288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090
  • Feng, Z., Fan, Z., Song, H., Li, K., Lu, H., Liu, Y., & Cheng, F. (2021). Biochar induced changes of soil dissolved organic matter: The release and adsorption of dissolved organic matter by biochar and soil. Science of the Total Environment, 783, 147091. https://doi.org/10.1016/j.scitotenv.2021.147091
  • Gao, J., Shi, Z., Wu, H., & Lv, J. (2020). Fluorescent characteristics of dissolved organic matter released from biochar and paddy soil incorporated with biochar. RSC Advances, 10(10), 5785–5793. https://doi.org/10.1039/c9ra10279e
  • Gopinath, A., Divyapriya, G., Srivastava, V., Laiju, A., Nidheesh, P., & Kumar, M. S. (2021). Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environmental Research, 194, 110656. https://doi.org/10.1016/j.envres.2020.110656
  • Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Perelomov, L. V., Soja, G., Zamulina, I. V., Rajput, V. D., Sushkova, S. N., Mohan, D., & Yao, J. (2020). The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 42(8), 2495–2518. https://doi.org/10.1007/s10653-019-00412-5
  • Gui, X., Liu, C., Li, F., & Wang, J. (2020). Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar. Ecotoxicology and Environmental Safety, 197, 110597. https://doi.org/10.1016/j.ecoenv.2020.110597
  • Han, L., Nie, X., Wei, J., Gu, M., Wu, W., & Chen, M. (2021). Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar. The Science of the Total Environment, 751, 141491.
  • He, A., Zhang, Z., Yu, Q., Yang, K., & Sheng, G. D. (2021). Lindane degradation in wet-dry cycling soil as affected by aging and microbial toxicity of biochar. Ecotoxicology and Environmental Safety, 219, 112374. https://doi.org/10.1016/j.ecoenv.2021.112374
  • He, M., Xu, Z., Hou, D., Gao, B., Cao, X., Ok, Y. S., Rinklebe, J., Bolan, N. S., & Tsang, D. C. (2022). Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 3(7), 444–460. https://doi.org/10.1038/s43017-022-00306-8
  • He, P., Yu, Q., Zhang, H., Shao, L., & Lü, F. (2017). Removal of copper (II) by biochar mediated by dissolved organic matter. Scientific Reports, 7(1), 7091. https://doi.org/10.1038/s41598-017-07507-y
  • Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., & Smolders, E. (2016). Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study. Scientific Reports, 6(1), 25127. https://doi.org/10.1038/srep25127
  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z
  • Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800.https://doi.org/10.3389/fpls.2019.00800
  • Huang, M., Li, Z., Chen, M., Wen, J., Luo, N., Xu, W., Ding, X., & Xing, W. (2020). Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. The Science of the Total Environment, 739, 140378.
  • Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x
  • Irfan, M., Hussain, Q., Khan, K. S., Akmal, M., Ijaz, S. S., Hayat, R., Khalid, A., Azeem, M., & Rashid, M. (2019). Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arabian Journal of Geosciences, 12(3), 95. https://doi.org/10.1007/s12517-019-4239-x
  • Jamieson, T., Sager, E., & Guéguen, C. (2014). Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere, 103, 197–204. https://doi.org/10.1016/j.chemosphere.2013.11.066
  • Jeffery, S., Verheijen, F. G., van der Velde, M., & Bastos, A. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Ecosystems, Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015
  • Ji, M., Sang, W., Tsang, D. C. W., Usman, M., Zhang, S., & Luo, G. (2020). Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. The Science of the Total Environment, 714, 136769.
  • Ji, M., Zhou, L., Zhang, S., Luo, G., & Sang, W. (2020). Effects of biochar on methane emission from paddy soil. The Science of the Total Environment, 743, 140725.
  • Jiang, X., Tan, X., Cheng, J., Haddix, M. L., & Cotrufo, M. F. (2019). Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations. Geoderma, 333, 99–107. https://doi.org/10.1016/j.geoderma.2018.07.016
  • Jones, D., Murphy, D., Khalid, M., Ahmad, W., Edwards-Jones, G., & DeLuca, T. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology Biochemistry, 43(8), 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018
  • Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar as an electron shuttle between bacteria and Fe (III) minerals. Environmental Science & Technology Letters, 1(8), 339–344. https://doi.org/10.1021/ez5002209
  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419
  • Khadem, A., Raiesi, F., Besharati, H., & Khalaj, M. A. (2021). The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar, 3(1), 105–116. https://doi.org/10.1007/s42773-020-00076-w
  • Khodadad, C. L., Zimmerman, A. R., Green, S. J., Uthandi, S., & Foster, J. S. (2011). Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology Biochemistry, 43(2), 385–392. https://doi.org/10.1016/j.soilbio.2010.11.005
  • Khosravi, A., Zheng, H., Liu, Q., Hashemi, M., Tang, Y., & Xing, B. (2022). Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 430, 133142. https://doi.org/10.1016/j.cej.2021.133142
  • Knox, O. G., Weitz, H. J., Anderson, P., Borlinghaus, M., & Fountaine, J. (2018). Improved screening of biochar compounds for potential toxic activity with microbial biosensors. Innovation, 9, 254–264.
  • Kwak, J.-H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 231, 393–404. https://doi.org/10.1016/j.chemosphere.2019.05.128
  • Lan, Z., Chen, C., Rezaei Rashti, M., Yang, H., & Zhang, D. (2018). High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil. Bioenergy, 10, 930–945.
  • Lee, M.-H., Ok, Y. S., & Hur, J. (2018). Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events. Environmental Pollution (Barking, Essex: 1987), 242(Pt B), 1912–1920. https://doi.org/10.1016/j.envpol.2018.07.073
  • Li, G., Khan, S., Ibrahim, M., Sun, T.-R., Tang, J.-F., Cotner, J. B., & Xu, Y.-Y. (2018). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 348, 100–108.
  • Li, J., Fan, J., Zhang, J., Hu, Z., & Liang, S. (2018). Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environmental Science and Pollution Research, 25(14), 13929–13937. https://doi.org/10.1007/s11356-018-1597-y
  • Li, L.-P., Liu, Y.-H., Ren, D., & Wang, J.-J. (2022). Characteristics and chlorine reactivity of biochar-derived dissolved organic matter: Effects of feedstock type and pyrolysis temperature. Water Research, 211, 118044. https://doi.org/10.1016/j.watres.2022.118044
  • Li, P., Chen, W., Han, Y., Wang, D., Zhang, Y., & Wu, C. (2020). Effects of straw and its biochar applications on the abundance and community structure of CO2-fixing bacteria in a sandy agricultural soil. Journal of Soils and Sediments, 20(4), 2225–2235. https://doi.org/10.1007/s11368-020-02584-5
  • Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255–281. https://doi.org/10.1007/s42773-021-00101-6
  • Liptzin, D., & Silver, W. L. (2009). Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biology Biochemistry, 41(8), 1696–1702. https://doi.org/10.1016/j.soilbio.2009.05.013
  • Lu, W., Ding, W., Zhang, J., Li, Y., Luo, J., Bolan, N., & Xie, Z. (2014). Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biology and Biochemistry, 76, 12–21. https://doi.org/10.1016/j.soilbio.2014.04.029
  • Martens, D. A., Jaynes, D. B., Colvin, T. S., Kaspar, T. C., & Karlen, D. L. (2006). Soil organic nitrogen enrichment following soybean in an Iowa corn–soybean rotation. Soil Science Society of America Journal, 70, 382–392.
  • Mitchell, P. J. (2016). The fate of organic matter in biochar-amended soil.
  • Mitchell, P. J., Simpson, A. J., Soong, R., & Simpson, M. J. (2015). Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biology and Biochemistry, 81, 244–254. https://doi.org/10.1016/j.soilbio.2014.11.017
  • Mostofa, K. M., Liu, C-q., Feng, X., Yoshioka, T., Vione, D., Pan, X., & Wu, F. (2013). Complexation of dissolved organic matter with trace metal ions in natural waters, photobiogeochemistry of organic matter (pp. 769–849). Springer.
  • Muhammad, N., Aziz, R., Brookes, P. C., & Xu, J. (2017). Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult. Nutrition, 17, 808–823. p
  • Peng, J., Han, X., Li, N., Chen, K., Yang, J., Zhan, X., Luo, P., & Liu, N. (2021). Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar, 3(3), 367–379. https://doi.org/10.1007/s42773-021-00090-6
  • Qu, X., Fu, H., Mao, J., Ran, Y., Zhang, D., & Zhu, D. (2016). Chemical and structural properties of dissolved black carbon released from biochars. Carbon, 96, 759–767. https://doi.org/10.1016/j.carbon.2015.09.106
  • Rajapaksha, A. U., Ok, Y. S., El-Naggar, A., Kim, H., Song, F., Kang, S., & Tsang, Y. F. (2019). Dissolved organic matter characterization of biochars produced from different feedstock materials. Journal of Environmental Management, 233, 393–399. https://doi.org/10.1016/j.jenvman.2018.12.069
  • Rombolà, A. G., Torri, C., Vassura, I., Venturini, E., Reggiani, R., & Fabbri, D. (2022). Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment. The Science of the Total Environment, 812, 151422. https://doi.org/10.1016/j.scitotenv.2021.151422
  • Rosa, E., & Debska, B. (2018). Seasonal changes in the content of dissolved organic matter in arable soils. Journal of Soils and Sediments, 18(8), 2703–2714. https://doi.org/10.1007/s11368-017-1797-y
  • Saarnio, S., Heimonen, K., & Kettunen, R. (2013). Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Biochemistry, 58, 99–106.
  • Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., & Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment, 191, 39–52. https://doi.org/10.1016/j.agee.2014.03.027
  • Shaheen, S. M., Mosa, A., Natasha Jeyasundar, P. G. S. A., Hassan, N. E. E., Yang, X., Antoniadis, V., Li, R., Wang, J., Zhang, T., Niazi, N. K., Shahid, M., Sharma, G., Alessi, D. S., Vithanage, M., Hseu, Z. Y., Sarmah, A. K., Sarkar, B., Zhang, Z., Hou, D., … Rinklebe, J. (2023). Pros and cons of biochar to soil potentially toxic element mobilization and phytoavailability: Environmental implications. Earth Systems and Environment, 7(1), 321–345. https://doi.org/10.1007/s41748-022-00336-8
  • Shaheen, S. M., Antoniadis, V., Shahid, M., Yang, Y., Abdelrahman, H., Zhang, T., Hassan, N. E., Bibi, I., Niazi, N. K., Younis, S. A., Almazroui, M., Tsang, Y. F., Sarmah, A. K., Kim, K.-H., & Rinklebe, J. (2022). Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 153, 111791. https://doi.org/10.1016/j.rser.2021.111791
  • Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). Wood-based biochar for removal of potentially toxic elements in water and wastewater: A critical review. International Materials Reviews, 64(4), 216–247. https://doi.org/10.1080/09506608.2018.1473096
  • Schofield, H. K., Pettitt, T. R., Tappin, A. D., Rollinson, G. K., & Fitzsimons, M. F. (2019). Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Science of the Total Environment, 690, 1228–1236. https://doi.org/10.1016/j.scitotenv.2019.07.116
  • Shang, H., Fu, Q., Zhang, S., & Zhu, X. (2021). Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter. The Science of the Total Environment, 757, 143749.
  • Singh, N., Abiven, S., Maestrini, B., Bird, J. A., Torn, M. S., & Schmidt, M. (2014). Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Global Change Biology, 20, 1629–1642.
  • Smebye, A., Alling, V., Vogt, R. D., Gadmar, T. C., Mulder, J., Cornelissen, G., & Hale, S. E. (2016). Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere, 142, 100–105. https://doi.org/10.1016/j.chemosphere.2015.04.087
  • Smith, C. R., Hatcher, P. G., Kumar, S., & Lee, J. W. (2016). Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. J.A.S.C., Engineering, 4, 2550–2558.
  • Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869–882. https://doi.org/10.1016/j.chemosphere.2011.06.108
  • Sun, D., Meng, J., Liang, H., Yang, E., Huang, Y., Chen, W., Jiang, L., Lan, Y., Zhang, W., & Gao, J. (2015). Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15(2), 271–281. https://doi.org/10.1007/s11368-014-0996-z
  • Sun, J., Drosos, M., Mazzei, P., Savy, D., Todisco, D., Vinci, G., Pan, G., & Piccolo, A. (2017). The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. The Science of the Total Environment, 576, 858–867. https://doi.org/10.1016/j.scitotenv.2016.10.095
  • Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., Zhang, W., Ok, Y. S., Rinklebe, J., Wang, L., & Tsang, D. C. W. (2021). Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 424, 130387. https://doi.org/10.1016/j.cej.2021.130387
  • Tang, J., Li, X., Luo, Y., Li, G., & Khan, S. (2016). Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity. Chemosphere, 152, 399–406. https://doi.org/10.1016/j.chemosphere.2016.03.016
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science Biotechnology, 1–25.
  • Usevičiūtė, L., & Baltrėnaitė, E. (2020). Methods for determining lignocellulosic biochar wettability. Waste and Biomass Valorization, 11(8), 4457–4468. https://doi.org/10.1007/s12649-019-00713-x
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235–246. https://doi.org/10.1007/s11104-009-0050-x
  • Wang, D., Griffin, D. E., Parikh, S. J., & Scow, K. M. (2016). Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events. Chemosphere, 160, 287–292. https://doi.org/10.1016/j.chemosphere.2016.06.100
  • Wang, N., Chang, Z.-Z., Xue, X.-M., Yu, J.-G., Shi, X.-X., Ma, L. Q., & Li, H.-B. (2017a). Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. The Science of the Total Environment, 581-582, 689–696.
  • Wang, Y.-Y., Jing, X.-R., Li, L.-L., Liu, W.-J., Tong, Z.-H., & Jiang, H. (2017b). Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. ACS Sustainable Chemistry & Engineering, 5(1), 481–488. https://doi.org/10.1021/acssuschemeng.6b01859
  • Wang, Y.-Y., Jing, X.-R., Li, L.-L., Liu, W.-J., Tong, Z.-H., & Jiang, H. (2017c). Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. J.A.S.C. Engineering, 5, 481–488.
  • Wang, Y., Zwieten, L., Wang, H., Wang, L., Li, R., Zhang, Y., & Qu, J. (2021). Sorption of Pb (Ii) Onto biochar is enhanced through co-sorption of dissolved organic matter. Available at SSRN, 3971421.
  • Wei, S., Zhu, M., Fan, X., Song, J., Peng, P., Li, K., Jia, W., & Song, H. (2019). Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere, 218, 624–631. https://doi.org/10.1016/j.chemosphere.2018.11.177
  • Wu, P., Fu, Q.-L., Zhu, X.-D., Liu, C., Dang, F., Müller, K., Fujii, M., Zhou, D.-M., Wang, H.-L., & Wang, Y.-J. (2020). Contrasting impacts of pH on the abiotic transformation of hydrochar-derived dissolved organic matter mediated by δ-MnO2. Geoderma, 378, 114627. https://doi.org/10.1016/j.geoderma.2020.114627
  • Xiao, X., & Chen, B. (2017). A direct observation of the fine aromatic clusters and molecular structures of biochars. Environmental Science & Technology, 51(10), 5473–5482. https://doi.org/10.1021/acs.est.6b06300
  • Xing, J., Xu, G., & Li, G. (2020). Analysis of the complexation behaviors of Cu(II) with DOM from sludge-based biochars and agricultural soil: Effect of pyrolysis temperature. Chemosphere, 250, 126184. https://doi.org/10.1016/j.chemosphere.2020.126184
  • Xu, S., Adhikari, D., Huang, R., Zhang, H., Tang, Y., Roden, E., & Yang, Y. (2016). Biochar-facilitated microbial reduction of hematite. Environmental Science & Technology, 50(5), 2389–2395. https://doi.org/10.1021/acs.est.5b05517
  • Yan, S., Niu, Z., Zhang, A., Yan, H., Zhang, H., He, K., Xiao, X., Wang, N., Guan, C., & Liu, G. (2019). Biochar application on paddy and purple soils in southern China: Soil carbon and biotic activity. Royal Society Open Science, 6(7), 181499. https://doi.org/10.1098/rsos.181499
  • Yang, C., Liu, Y., Sun, X., Miao, S., Guo, Y., & Li, T. (2019). Characterization of fluorescent dissolved organic matter from green macroalgae (Ulva prolifera)-derived biochar by excitation-emission matrix combined with parallel factor and self-organizing maps analyses. Bioresource Technology, 287, 121471. https://doi.org/10.1016/j.biortech.2019.121471
  • Yang, F., Wang, C., & Sun, H. (2021). A comprehensive review of biochar-derived dissolved matters in biochar application: Production, characteristics, and potential environmental effects and mechanisms. Journal of Environmental Chemical Engineering, 9(3), 105258. https://doi.org/10.1016/j.jece.2021.105258
  • Yang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., & Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. The Science of the Total Environment, 758, 143657.
  • Yang, X., Tsibart, A., Nam, H., Hur, J., El-Naggar, A., Tack, F. M. G., Wang, C.-H., Lee, Y. H., Tsang, D. C. W., & Ok, Y. S. (2019). Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 365, 684–694.
  • Yu, M., Liang, S., Dai, Z., Li, Y., Luo, Y., Tang, C., & Xu, J. (2021). Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil. Science of the Total Environment, 763, 143048.
  • Zhang, A., Zhou, X., Li, M., & Wu, H. (2017). Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China. Chemosphere, 186, 986–993.
  • Zhang, B., Zhou, S., Zhou, L., Wen, J., & Yuan, Y. (2019). Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matters derived from wheat straw biochar. The Science of the Total Environment, 696, 133895.
  • Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., & He, P. (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. JSR, 5, 1–8.
  • Zhang, P., Huang, P., Xu, X., Sun, H., Jiang, B., & Liao, Y. (2020). Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. The Science of the Total Environment, 708, 134619.
  • Zhang, P., Liu, A., Huang, P., Min, L., & Sun, H. (2020). Sorption and molecular fractionation of biochar-derived dissolved organic matter on ferrihydrite. Journal of Hazardous Materials, 392, 122260.
  • Zhang, P., Shao, Y., Xu, X., Huang, P., & Sun, H. (2020). Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light. The Science of the Total Environment, 724, 137913.
  • Zhang, X., Cai, X., Wang, Z., Yang, X., Li, S., Liang, G., & Xie, X. (2021). Insight into metal binding properties of biochar-derived DOM using EEM-PARAFAC and differential absorption spectra combined with two-dimensional correlation spectroscopy. Environmental Science and Pollution Research, 28, 13375–13393.
  • Zhao, C., Zhang, Y., Liu, X., Ma, X., Meng, Y., Li, X., Quan, X., Shan, J., Zhao, W., & Wang, H. (2020). Comparing the effects of biochar and straw amendment on soil carbon pools and bacterial community structure in degraded soil. Journal of Soil Science and Plant Nutrition, 20, 751–760.
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115.
  • Zhu, X., Mao, L., & Chen, B. (2019). Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. Environment International, 133(Pt B), 105211. https://doi.org/10.1016/j.envint.2019.105211
  • Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science & Technology, 44(4), 1295–1301. https://doi.org/10.1021/es903140c
  • Zsolnay, A. (2003). Dissolved organic matter: Artefacts, definitions, and functions. Geoderma, 113, 187–209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.