1,398
Views
0
CrossRef citations to date
0
Altmetric
Invited Review

Microplastics and nanoplastics in the soil-plant nexus: Sources, uptake, and toxicity

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1613-1642 | Published online: 11 Apr 2023

References

  • Abbasi, S., Moore, F., & Keshavarzi, B. (2021). PET-microplastics as a vector for polycyclic aromatic hydrocarbons in a simulated plant rhizosphere zone. Environmental Technology & Innovation, 21, 101370. https://doi.org/10.1016/j.eti.2021.101370
  • Abbasi, S., Moore, F., Keshavarzi, B., Hopke, P. K., Naidu, R., Rahman, M. M., Oleszczuk, P., & Karimi, J. (2020). PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. The Science of the Total Environment, 744, 140984. https://doi.org/10.1016/j.scitotenv.2020.140984
  • Accinelli, C., Abbas, H. K., & Shier, W. T. (2018). A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement, 32(3), 318–330. https://doi.org/10.1080/15427528.2018.1425792
  • Accinelli, C., Abbas, H. K., Shier, W. T., Vicari, A., Little, N. S., Aloise, M. R., & Giacomini, S. (2019). Degradation of microplastic seed film-coating fragments in soil. Chemosphere, 226, 645–650. https://doi.org/10.1016/j.chemosphere.2019.03.161
  • Al-Khanbashi, A., & El-Gamal, M. (2003). Modification of sandy soil using water-borne polymer. Journal of Applied Polymer Science, 88(10), 2484–2491. https://doi.org/10.1002/app.12066
  • Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Jimenez, P. D., Simonneau, A., Binet, S., & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339–344. https://doi.org/10.1038/s41561-019-0335-5
  • Anunciado, M. B., Hayes, D. G., Astner, A. F., Wadsworth, L. C., Cowan-Banker, C. D., Gonzalez, J. E. L. y., & DeBruyn, J. M. (2021). Effect of environmental weathering on biodegradation of biodegradable plastic mulch films under ambient soil and composting conditions. Journal of Polymers and the Environment, 29(9), 2916–2931. https://doi.org/10.1007/s10924-021-02088-4
  • Anunciado, M. B., Hayes, D. G., Wadsworth, L. C., English, M. E., Schaeffer, S. M., Sintim, H. Y., & Flury, M. (2021). Impact of agricultural weathering on physicochemical properties of biodegradable plastic mulch films: Comparison of two diverse climates over four successive years. Journal of Polymers and the Environment, 29(1), 1–16. https://doi.org/10.1007/s10924-020-01853-1
  • Arikan, B., Alp, F. N., Ozfidan-Konakci, C., Balci, M., Elbasan, F., Yildiztugay, E., & Cavusoglu, H. (2022). Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere, 307(Pt 4), 136048. https://doi.org/10.1016/j.chemosphere.2022.136048
  • Arikan, B., Ozfidan-Konakci, C., Yildiztugay, E., Turan, M., & Cavusoglu, H. (2022). Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. Environmental Pollution (Barking, Essex: 1987), 311, 119851. https://doi.org/10.1016/j.envpol.2022.119851
  • Awet, T. T., Kohl, Y., Meier, F., Straskraba, S., Grün, A. L., Ruf, T., Jost, C., Drexel, R., Tunc, E., & Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 1–10. https://doi.org/10.1186/S12302-018-0140-6/FIGURES/3
  • Bandmann, V., Müller, J. D., Köhler, T., & Homann, U. (2012). Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Letters, 586(20), 3626–3632. https://doi.org/10.1016/j.febslet.2012.08.008
  • Bao, Y., Pan, C., Li, D., Guo, A., & Dai, F. (2022). Stress response to oxytetracycline and microplastic-polyethylene in wheat (Triticum aestivum L.) during seed germination and seedling growth stages. The Science of the Total Environment, 806(Pt 2), 150553. https://doi.org/10.1016/j.scitotenv.2021.150553
  • Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593. https://doi.org/10.1016/j.chemosphere.2019.124593
  • Bhagat, J., Ingole, B. S., & Singh, N. (2016). Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review. Invertebrate Survival Journal, 13(1), 336–349. https://doi.org/10.25431/1824-307X/ISJ.V13I1.336-349
  • Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19), 11496–11506. https://doi.org/10.1021/acs.est.9b03304
  • Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver, M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163
  • Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: a global evaluation of sources (Vol. 43). Iucn.
  • Bradney, L., Wijesekara, H., Palansooriya, K. N., Obadamudalige, N., Bolan, N. S., Ok, Y. S., Rinklebe, J., Kim, K.-H., & Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937. https://doi.org/10.1016/j.envint.2019.104937
  • Brown, R. W., Chadwick, D. R., Thornton, H., Marshall, M. R., Bei, S., Distaso, M. A., Bargiela, R., Marsden, K. A., Clode, P. L., Murphy, D. v., Pagella, S., & Jones, D. L. (2022). Field application of pure polyethylene microplastic has no significant short-term effect on soil biological quality and function. Soil Biology and Biochemistry, 165, 108496. https://doi.org/10.1016/j.soilbio.2021.108496
  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175–9179. https://doi.org/10.1021/es201811s
  • Bullard, J. E., Ockelford, A., O’Brien, P., & McKenna Neuman, C. (2021). Preferential transport of microplastics by wind. Atmospheric Environment, 245, 118038. https://doi.org/10.1016/j.atmosenv.2020.118038
  • Carpita, N., Sabularse, D., Montezinos, D., & Delmer, D. P. (1979). Determination of the pore size of cell walls of living plant cells. Science, 205(4411), 1144–1147. http://www.jstor.org/stable/1748060 https://doi.org/10.1126/science.205.4411.1144
  • Chae, Y., & An, Y. J. (2020). Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects via vascular plants. Environmental Science: Nano, 7(3), 975–983. https://doi.org/10.1039/C9EN01335K
  • Chen, S., Feng, Y., Han, L., Li, D., Feng, Y., Jeyakumar, P., Sun, H., Shi, W., & Wang, H. (2022). Responses of rice (Oryza sativa L.) plant growth, grain yield and quality, and soil properties to the microplastic occurrence in paddy soil. Journal of Soils and Sediments, 22(8), 2174–2183. https://doi.org/10.1007/s11368-022-03232-w
  • Cheng, H., Hu, Y., & Reinhard, M. (2014). Environmental and health impacts of artificial turf: A review. Environmental Science & Technology, 48(4), 2114–2129. https://doi.org/10.1021/es4044193
  • Chen, R., Ratnikova, T., Stone, M., Lin, S., Lard, M., Huang, G., Hudson, J., & Ke, P. (2010). Differential uptake of carbon nanoparticles by plant and mammalian cells. Small (Weinheim an der Bergstrasse, Germany), 6(5), 612–617. https://doi.org/10.1002/smll.200901911
  • Conley, K., Clum, A., Deepe, J., Lane, H., & Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3, 100030. https://doi.org/10.1016/j.wroa.2019.100030
  • Corradini, F., Bartholomeus, H., Huerta Lwanga, E., Gertsen, H., & Geissen, V. (2019). Predicting soil microplastic concentration using vis-NIR spectroscopy. The Science of the Total Environment, 650(Pt 1), 922–932. https://doi.org/10.1016/j.scitotenv.2018.09.101
  • de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044–6052. https://doi.org/10.1021/acs.est.9b01339
  • Ding, L., Zhang, S., Wang, X., Yang, X., Zhang, C., Qi, Y., & Guo, X. (2020). The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. The Science of the Total Environment, 720, 137525. https://doi.org/10.1016/j.scitotenv.2020.137525
  • Do, T. C. v., & Scherer, H. W. (2012). Compost and biogas residues as basic materials for potting substrates. Plant, Soil and Environment, 58(10), 459–464. https://doi.org/10.17221/445/2012-PSE
  • Dong, Y., Bao, Q., Gao, M., Qiu, W., & Song, Z. (2022). A novel mechanism study of microplastic and As co-contamination on indica rice (Oryza sativa L.). Journal of Hazardous Materials, 421, 126694. https://doi.org/10.1016/j.jhazmat.2021.126694
  • Dong, Y. M., Gao, M. L., Qiu, W. W., & Song, Z. G. (2021). Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials, 411, 125055. https://doi.org/10.1016/j.jhazmat.2021.125055
  • Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 211, 111899. https://doi.org/10.1016/j.ecoenv.2021.111899
  • Dong, Y. M., Gao, M. L., Song, Z. G., & Qiu, W. W. (2020). Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution (Barking, Essex: 1987), 259, 113892. https://doi.org/10.1016/j.envpol.2019.113892
  • Dong, R., Liu, R., Xu, Y., Liu, W., Wang, L., Liang, X., Huang, Q., & Sun, Y. (2022). Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia campestris L.). Chemosphere, 291(Pt 3), 133066. https://doi.org/10.1016/j.chemosphere.2021.133066
  • Dong, Y., Song, Z., Liu, Y., & Gao, M. (2021). Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality. Environmental Pollution (Barking, Essex: 1987), 278, 116871. https://doi.org/10.1016/j.envpol.2021.116871
  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1–2), 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006
  • Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2. https://doi.org/10.1186/s12302-015-0069-y
  • Eichert, T., & Goldbach, H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiologia Plantarum, 132(4), 491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x
  • Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y. M., & Milo, R. (2020). Global human-made mass exceeds all living biomass. Nature, 588(7838), 442–444. https://doi.org/10.1038/s41586-020-3010-5
  • Enders, K., Tagg, A. S., & Labrenz, M. (2020). Evaluation of electrostatic separation of microplastics from mineral-rich environmental samples. Frontiers in Environmental Science, 8, 112. https://www.frontiersin.org/articles/10.3389/fenvs.2020.00112
  • Essel, R. E. (2015). Sources of microplastics relevant to marine protection in Germany by | Semantic Scholar. https://www.semanticscholar.org/paper/Sources-of-microplastics-relevant-to-marine-in-by-Essel/cdbee806d5db8859bfbce55391f8a86f2a3a6ce9
  • FAO. (2021). Assessment of agricultural plastics and their sustainability: A call for action. Rome. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1460015/
  • Felsing, S., Kochleus, C., Buchinger, S., Brennholt, N., Stock, F., & Reifferscheid, G. (2018). A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environmental Pollution (Barking, Essex: 1987), 234, 20–28. https://doi.org/10.1016/j.envpol.2017.11.013
  • Feng, Y., Chen, S., Han, L., Wang, B., Sun, H., Xie, W., Lu, Q., Feng, Y., Poinern, G. E. J., & Xue, L. (2022). Hydrochar and microplastics disturb soil dissolved organic matter and prominently mitigate ammonia volatilization from wheat growing soil. Applied Soil Ecology, 178, 104552. https://doi.org/10.1016/j.apsoil.2022.104552
  • Foqué, D., Devarrewaere, W., Verboven, P., & Nuyttens, D. (2014). Physical and chemical characteristics of abraded seed coating particles. Aspects of Applied Biology, 122, 85–94.
  • Fu, Q., Lai, J., Ji, X., Luo, Z., Wu, G., & Luo, X. (2022). Alterations of the rhizosphere soil microbial community composition and metabolite profiles of Zea mays by polyethylene-particles of different molecular weights. Journal of Hazardous Materials, 423(Pt A), 127062. https://doi.org/10.1016/j.jhazmat.2021.127062
  • Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50(11), 5774–5780. https://doi.org/10.1021/acs.est.6b00816
  • Gao, M., Bai, L., Li, X., Wang, S., & Song, Z. (2022). Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings. Environmental Pollution (Barking, Essex: 1987), 306, 119349. https://doi.org/10.1016/j.envpol.2022.119349
  • Gao, M., Liu, Y., Dong, Y., & Song, Z. (2021). Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.). Journal of Hazardous Materials, 401, 123422. https://doi.org/10.1016/j.jhazmat.2020.123422
  • Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482
  • Gao, M., Xu, Y., Liu, Y., Wang, S., Wang, C., Dong, Y., & Song, Z. (2021). Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environmental Pollution (Barking, Essex: 1987), 268(Pt B), 115870. https://doi.org/10.1016/j.envpol.2020.115870
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Gharahi, N., & Zamani-Ahmadmahmoodi, R. (2022). Effect of plastic pollution in soil properties and growth of grass species in semi-arid regions: a laboratory experiment. Environmental Science and Pollution Research, 29(39), 59118–59126. https://doi.org/10.1007/S11356-022-19373-X/FIGURES/3
  • Giorgetti, L., Spanò, C., Muccifora, S., Bottega, S., Barbieri, F., Bellani, L., & Castiglione, M. R. (2020). Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry: PPB, 149, 170–177. https://doi.org/10.1016/j.plaphy.2020.02.014
  • Gong, W., Zhang, W., Jiang, M., Li, S., Liang, G., Bu, Q., Xu, L., Zhu, H., & Lu, A. (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics. The Science of the Total Environment, 796, 148750. https://doi.org/10.1016/j.scitotenv.2021.148750
  • Grand View Research. (n.d.). Artificial turf market size, share & trends analysis report by material (polyethylene, polypropylene, nylon), by application (residential, commercial, sports), by region, and segment forecasts, 2019 - 2025. Retrieved February 12, 2022, from https://www.grandviewresearch.com/industry-analysis/artificial-turf-market
  • Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., & Rochman, C. M. (2019). Magnetic extraction of microplastics from environmental samples. Environmental Science & Technology Letters, 6(2), 68–72. https://doi.org/10.1021/acs.estlett.8b00671
  • Greenfield, L. M., Graf, M., Rengaraj, S., Bargiela, R., Williams, G., Golyshin, P. N., Chadwick, D. R., & Jones, D. L. (2022). Field response of N2O emissions, microbial communities, soil biochemical processes and winter barley growth to the addition of conventional and biodegradable microplastics. Agriculture, Ecosystems & Environment, 336, 108023. https://doi.org/10.1016/j.agee.2022.108023
  • Guo, A., Pan, C., Su, X., Zhou, X., & Bao, Y. (2022). Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. Environmental Pollution (Barking, Essex: 1987), 302, 119046. https://doi.org/10.1016/j.envpol.2022.119046
  • Guo, Q. Q., Xiao, M. R., Ma, Y., Niu, H., & Zhang, G. S. (2021). Polyester microfiber and natural organic matter impact microbial communities, carbon-degraded enzymes, and carbon accumulation in a clayey soil. Journal of Hazardous Materials, 405, 124701. https://doi.org/10.1016/j.jhazmat.2020.124701
  • Hayes, D. G., Wadsworth, L. C., Sintim, H. Y., Flury, M., English, M., Schaeffer, S., & Saxton, A. M. (2017). Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polymer Testing, 62, 454–467. https://doi.org/10.1016/j.polymertesting.2017.07.027
  • Hazeem, L. J., Yesilay, G., Bououdina, M., Perna, S., Cetin, D., Suludere, Z., Barras, A., & Boukherroub, R. (2020). Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Marine Pollution Bulletin, 156, 111278. https://doi.org/10.1016/j.marpolbul.2020.111278
  • Huang, D., Zhou, W., Chen, S., Tao, J., Li, R., Yin, L., Wang, X., & Chen, H. (2022). Presence of polystyrene microplastics in Cd contaminated water promotes Cd removal by nano zero-valent iron and ryegrass (Lolium Perenne L.). Chemosphere, 303(Pt 1), 134729. https://doi.org/10.1016/j.chemosphere.2022.134729
  • Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environmental Science & Technology, 52(13), 7409–7417. https://doi.org/10.1021/acs.est.8b01517
  • Incotec. (n.d.). Microplastic-free seed coatings. Retrieved February 11, 2022, from https://www.incotec.com/en-gb/sustainable-seed-solutions/microplastic-free-seed-coatings
  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science (New York, NY), 347(6223), 768–771. https://doi.org/10.1126/science.1260352
  • Järlskog, I., Strömvall, A.-M., Magnusson, K., Gustafsson, M., Polukarova, M., Galfi, H., Aronsson, M., & Andersson-Sköld, Y. (2020). Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. The Science of the Total Environment, 729, 138950. https://doi.org/10.1016/j.scitotenv.2020.138950
  • Jeon, H. J., & Kim, M. N. (2013). Biodegradation of poly(l-lactide) (PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 85, 289–293. https://doi.org/10.1016/j.ibiod.2013.08.013
  • Jia, H., Wu, D., Yu, Y., Han, S., Sun, L., & Li, M. (2022). Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere, 288(Pt 2), 132576. https://doi.org/10.1016/j.chemosphere.2021.132576
  • Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution (Barking, Essex: 1987), 250, 831–838. https://doi.org/10.1016/j.envpol.2019.04.055
  • Kalcikova, G., Gotvajn, A. Z., Kladnik, A., & Jemec, A. (2017). Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution (Barking, Essex: 1987), 230, 1108–1115. https://doi.org/10.1016/j.envpol.2017.07.050
  • Kijchavengkul, T., Auras, R., Rubino, M., Ngouajio, M., & Fernandez, R. T. (2008). Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere, 71(9), 1607–1616. https://doi.org/10.1016/j.chemosphere.2008.01.037
  • Kim, D., An, S., Kim, L., Byeon, Y. M., Lee, J., Choi, M.-J., & An, Y.-J. (2022). Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. Journal of Hazardous Materials, 436, 129194. https://doi.org/10.1016/j.jhazmat.2022.129194
  • Kleunen, M., Brumer, A., Gutbrod, L., & Zhang, Z. (2020). A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants, People, Planet, 2(2), 157–166. https://doi.org/10.1002/ppp3.10071
  • Kole, P. J., Löhr, A. J., van Belleghem, F. G. A. J., & Ragas, A. M. J. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14(10), 1265. https://doi.org/10.3390/ijerph14101265
  • Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I., & Finley, B. L. (2010). Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. The Science of the Total Environment, 408(3), 652–659. https://doi.org/10.1016/j.scitotenv.2009.10.016
  • Lassen, C., Hansen, S. F., Magnusson, K., Norén, F., Hartmann, N. I. B., Jensen, P. R., Nielsen, T. G., & Brinch, A. (2012). Microplastics-occurrence, effects and sources of. Significance, 2, 2.
  • Leifheit, E. F., Kissener, H. L., Faltin, E., Ryo, M., & Rillig, M. C. (2022). Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling. Soil Ecology Letters, 4(4), 409–415. https://doi.org/10.1007/s42832-021-0114-2
  • Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution (Barking, Essex: 1987), 280, 116978. https://doi.org/10.1016/j.envpol.2021.116978
  • Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., & Liu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620
  • Lian, J., Wu, J., Zeb, A., Zheng, S., Ma, T., Peng, F., Tang, J., & Liu, W. (2020). Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)? Environmental Pollution (Barking, Essex: 1987), 263(Pt A), 114498. https://doi.org/10.1016/j.envpol.2020.114498
  • Li, S., Guo, J., Wang, T., Gong, L., Liu, F., Brestic, M., Liu, S., Song, F., & Li, X. (2021). Melatonin reduces nanoplastic uptake, translocation and toxicity in wheat. Journal of Pineal Research, 71(3), e12761. https://doi.org/10.1111/jpi.12761
  • Li, Z. X., Li, Q. F., Li, R. J., Zhou, J. G., & Wang, G. Y. (2021). The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research International, 28(13), 16042–16053. https://doi.org/10.1007/s11356-020-11702-2
  • Li, Z., Li, R., Li, Q., Zhou, J., & Wang, G. (2020). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255, 127041. https://doi.org/10.1016/j.chemosphere.2020.127041
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929–937. https://doi.org/10.1038/s41893-020-0567-9
  • Li, C., Moore-Kucera, J., Miles, C., Leonas, K., Lee, J., Corbin, A., & Inglis, D. (2014). Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecology and Sustainable Food Systems, 38(8), 861–889. https://doi.org/10.1080/21683565.2014.884515
  • Liu, E., He, W., & Yan, C. (2014). “White revolution” to “white pollution” - Agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001. https://doi.org/10.1088/1748-9326/9/9/091001
  • Liu, Y., Ren, T., Xu, G., Teng, H., Liu, B., & Yu, Y. (2022). Effects of micro- and nano-plastics on accumulation and toxicity of pyrene in water spinach (Ipomoea aquatica Forsk). Environmental Science and Pollution Research, 1, 1–10. https://doi.org/10.1007/S11356-022-22156-Z/FIGURES/4
  • Liu, S., Wang, J., Zhu, J., Wang, J., Wang, H., & Zhan, X. (2021). The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere, 282, 130967. https://doi.org/10.1016/j.chemosphere.2021.130967
  • Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064
  • Liu, H., Yue, L., Zhao, Y., Li, J., Fu, Y., Deng, H., Feng, D., Li, Q., Yu, H., Zhang, Y., & Ge, C. (2022). Changes in bacterial community structures in soil caused by migration and aging of microplastics. The Science of the Total Environment, 848, 157790. https://doi.org/10.1016/j.scitotenv.2022.157790
  • Li, S., Wang, T., Guo, J., Dong, Y., Wang, Z., Gong, L., & Li, X. (2021). Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. Journal of Hazardous Materials, 415, 125614. https://doi.org/10.1016/j.jhazmat.2021.125614
  • Li, L. Z., Zhou, Q., Yin, N., Tu, C., & Luo, Y. M. (2019). Uptake and accumulation of microplastics in an edible plant. Chinese Science Bulletin, 64(9), 928–934. https://doi.org/10.1360/N972018-00845
  • Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., & Rillig, M. C. (2021). Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12, 616645. https://www.frontiersin.org/articles/10.3389/fpls.2021.616645 https://doi.org/10.3389/fpls.2021.616645
  • Luo, Y., Li, L., Feng, Y., Li, R., Yang, J., Peijnenburg, W. J. G. M., & Tu, C. (2022). Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 17(4), 424–431. https://doi.org/10.1038/s41565-021-01063-3
  • Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO.
  • Ma, J., Chen, F., Zhu, Y., Li, X., Yu, H., & Sun, Y. (2022). Joint effects of microplastics and ciprofloxacin on their toxicity and fates in wheat: A hydroponic study. Chemosphere, 303(Pt 2), 135023. https://doi.org/10.1016/j.chemosphere.2022.135023
  • MarketsandMarkets. (n.d.). Seed coating market by additive (polymers, colorants, pellets, minerals/pumice, active ingredients), process (film coating, encrusting, pelleting), active ingredient (protectants and phytoactive promoters), crop type, region - global forecast to 2025. Retrieved February 11, 2022, from https://www.marketsandmarkets.com/Market-Reports/seed-coating-materials-market-149045530.html
  • Marsman, D. (1995). NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice. Toxicity Report Series, 30, 1–G5.
  • Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., Frank N A M, v P., John, O., & Marcel A K, J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). The Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359
  • Materić, D., Kasper-Giebl, A., Kau, D., Anten, M., Greilinger, M., Ludewig, E., van Sebille, E., Röckmann, T., & Holzinger, R. (2020). Micro-and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range. Environmental Science & Technology, 54(4), 2353–2359. https://doi.org/10.1021/ACS.EST.9B07540/SUPPL_FILE/ES9B07540_SI_005.ZIP
  • Melanie, B., Sophia, M., Sebastian, P., B. T. M., Jürg, T., & Gunnar, G. (2022). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5(8), eaax1157. https://doi.org/10.1126/sciadv.aax1157
  • Mo, X., Li, H., Lian, Y., Zheng, B., Dong, J., & Lu, X. (2021). Estimation of soil microplastic input derived from plastic gauze using a simplified model. The Science of the Total Environment, 793, 148577 https://doi.org/10.1016/j.scitotenv.2021.148577.
  • Mohajerani, A., & Karabatak, B. (2020). Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Management (New York, NY), 107, 252–265. https://doi.org/10.1016/j.wasman.2020.04.021
  • Möller, J. N., Löder, M. G. J., & Laforsch, C. (2020). Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 54(4), 2078–2090. https://doi.org/10.1021/acs.est.9b04618
  • Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. The Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
  • Nguyen, B., Claveau-Mallet, D., Hernandez, L. M., Xu, E. G., Farner, J. M., & Tufenkji, N. (2019). Separation and analysis of microplastics and nanoplastics in complex environmental samples. Accounts of Chemical Research, 52(4), 858–866. https://doi.org/10.1021/acs.accounts.8b00602
  • Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology, 50(20), 10777–10779. https://doi.org/10.1021/acs.est.6b04140
  • Ohtake, Y., Kobayashi, T., Asabe, H., & Murakami, N. (1998). Studies on biodegradation of LDPE—observation of LDPE films scattered in agricultural fields or in garden soil. Polymer Degradation and Stability, 60(1), 79–84. https://doi.org/10.1016/S0141-3910(97)00032-3
  • Oliveri Conti, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M., & Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677
  • Olsen, L. M. B., Knutsen, H., Mahat, S., Wade, E. J., & Arp, H. P. H. (2020). Facilitating microplastic quantification through the introduction of a cellulose dissolution step prior to oxidation: Proof-of-concept and demonstration using diverse samples from the Inner Oslofjord, Norway. Marine Environmental Research, 161, 105080. https://doi.org/10.1016/j.marenvres.2020.105080
  • Park, H., & Park, B. (2021). Review of microplastic distribution, toxicity, analysis methods, and removal technologies. Water, 13(19), 2736. https://doi.org/10.3390/w13192736
  • Pflugmacher, S., Sulek, A., Mader, H., Heo, J., Noh, J. H., Penttinen, O.-P., Kim, Y., Kim, S., & Esterhuizen, M. (2020). The influence of new and artificial aged microplastic and leachates on the germination of Lepidium sativum L. Plants (Basel), 9(3), 339. https://doi.org/10.3390/plants9030339https://doi.org/10.3390/plants9030339
  • Pflugmacher, S., Tallinen, S., Mitrovic, S. M., Penttinen, O.-P., Kim, Y.-J., Kim, S., & Esterhuizen, M. (2021). Case study comparing effects of microplastic derived from bottle caps collected in two cities on Triticum aestivum (Wheat). Environments, 8(7), 64. https://doi.org/10.3390/environments8070064
  • Pignattelli, S., Broccoli, A., & Renzi, M. (2020). Physiological responses of garden cress (L. sativum) to different types of microplastics. The Science of the Total Environment, 727, 138609. https://doi.org/10.1016/j.scitotenv.2020.138609
  • Pu, J., Ma, J., Li, J., Wang, S., & Zhang, W. (2023). Organosilicon and inorganic silica inhibit polystyrene nanoparticles uptake in rice. Journal of Hazardous Materials, 442, 130012. https://doi.org/10.1016/j.jhazmat.2022.130012
  • Qi, R., Jones, D. L., Li, Z., Liu, Q., & Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. The Science of the Total Environment, 703, 134722. https://doi.org/10.1016/j.scitotenv.2019.134722
  • Ren, S. Y., Kong, S. F., & Ni, H. G. (2021). Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environmental Pollution (Barking, Essex: 1987), 291, 118227. https://doi.org/10.1016/j.envpol.2021.118227
  • Rigas, F., Sachini, E., & Dikis, B. (1991). Effects of a new polystyrene based soil conditioner on Helianthus annuus [Paper presentation]. Sixth International Conference Biomass for Energy, Industry and Environmental, Athens, Greece.
  • Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12), 6453–6454. https://doi.org/10.1021/es302011r
  • Rillig, M. C., & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science (New York, NY), 368(6498), 1430–1431. https://doi.org/10.1126/science.abb5979
  • Rillig, M. C., Lehmann, A., de Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. The New Phytologist, 223(3), 1066–1070. https://doi.org/10.1111/nph.15794
  • Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19(3), e3001130. https://doi.org/10.1371/journal.pbio.3001130
  • Sahu, B., & Tripathy, B. (2020). Plasticulture: An emerging picture in Indian farming. Journal of Pharmacognosy and Phytochemistry, 9, 448–451.
  • Schönherr, J. (2002). A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Management Science, 58(4), 343–351. https://doi.org/10.1002/ps.462
  • Scircle, A., Cizdziel, J. v., Tisinger, L., Anumol, T., & Robey, D. (2020). Occurrence of microplastic pollution at oyster reefs and other coastal sites in the Mississippi Sound, USA: Impacts of freshwater inflows from flooding. Toxics, 8(2), 35. https://doi.org/10.3390/toxics8020035
  • Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. The Science of the Total Environment, 733, 139338. https://doi.org/10.1016/j.scitotenv.2020.139338
  • Seiwert, B., Klockner, P., Wagner, S., & Reemtsma, T. (2020). Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters. Analytical and Bioanalytical Chemistry, 412(20), 4909–4919. https://doi.org/10.1007/s00216-020-02653-1
  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005
  • Sharma, N., Kumar, V., Maitra, S. S., Lakkaboyana, S. K., & Khantong, S. (2021). DBP biodegradation kinetics by Acinetobacter sp.33F in pristine agricultural soil. Environmental Technology & Innovation, 21, 101240. https://doi.org/10.1016/j.eti.2020.101240
  • Singh, N., Khandelwal, N., Tiwari, E., Naskar, N., Lahiri, S., Lützenkirchen, J., & Darbha, G. K. (2021). Interaction of metal oxide nanoparticles with microplastics: impact of weathering under riverine conditions. Water Research, 189, 116622. https://doi.org/10.1016/j.watres.2020.116622
  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? The Science of the Total Environment, 550, 690–705. https://doi.org/10.1016/j.scitotenv.2016.01.153
  • Sun, H., Lei, C., Yuan, Y., Xu, J., & Han, M. (2022). Nanoplastic impacts on the foliar uptake, metabolism and phytotoxicity of phthalate esters in corn (Zea mays L.) plants. Chemosphere, 304, 135309. https://doi.org/10.1016/j.chemosphere.2022.135309
  • Sun, X.-D., Yuan, X.-Z., Jia, Y., Feng, L.-J., Zhu, F.-P., Dong, S.-S., Liu, J., Kong, X., Tian, H., Duan, J.-L., Ding, Z., Wang, S.-G., & Xing, B. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9), 755–760. https://doi.org/10.1038/s41565-020-0707-4
  • Tamis, J. E., Koelmans, A. A., Dröge, R., Kaag, N. H. B. M., Keur, M. C., Tromp, P. C., & Jongbloed, R. H. (2021). Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics and Nanoplastics, 1(1), 10. https://doi.org/10.1186/s43591-021-00008-w
  • The World Bank Group. (n.d.). Agricultural land (% of land area). Retrieved February 11, 2022, from https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?end=2018&start=1961&type=shaded&view=chart
  • Thomas, D., Schütze, B., Heinze, W. M., & Steinmetz, Z. (2020). Sample preparation techniques for the analysis of microplastics in soil—a review. Sustainability, 12(21), 9074. https://doi.org/10.3390/su12219074
  • Tophinke, A. H., Joshi, A., Baier, U., Hufenus, R., & Mitrano, D. M. (2022). Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environmental Pollution, 311, 119933. https://doi.org/10.1016/j.envpol.2022.119933
  • Wahl, A., Le Juge, C., Davranche, M., el Hadri, H., Grassl, B., Reynaud, S., & Gigault, J. (2021). Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere, 262, 127784. https://doi.org/10.1016/j.chemosphere.2020.127784
  • Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. The Science of the Total Environment, 654, 576–582. https://doi.org/10.1016/j.scitotenv.2018.11.123
  • Wang, X., Duan, Z., Brydegaard, M., Svanberg, S., & Zhao, G. (2018). Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system. Applied Physics B, 124(11), 1–5. https://doi.org/10.1007/S00340-018-7078-7/FIGURES/3
  • Wang, L., Lin, B., Wu, L., Pan, P., Liu, B., & Li, R. (2022). Antagonistic effect of polystyrene nanoplastics on cadmium toxicity to maize (Zea mays L.). Chemosphere, 307(Pt 1), 135714. https://doi.org/10.1016/j.chemosphere.2022.135714
  • Wang, J., Lu, S., Bian, H., Xu, M., Zhu, W., Wang, H., He, C., & Sheng, L. (2022). Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere, 304, 135341. https://doi.org/10.1016/j.chemosphere.2022.135341
  • Wang, F., Wang, X., & Song, N. (2021). Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. The Science of the Total Environment, 784, 147133. https://doi.org/10.1016/j.scitotenv.2021.147133
  • Wang, F., Zhang, X., Zhang, S., Zhang, S., Adams, C. A., & Sun, Y. (2020). Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics, 8(2), 36. https://doi.org/10.3390/toxics8020036
  • Wang, F., Zhang, X., Zhang, S., Zhang, S., & Sun, Y. (2020). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791. https://doi.org/10.1016/j.chemosphere.2020.126791
  • Watterson, A. (2017). Artificial Turf: Contested Terrains for Precautionary Public Health with Particular Reference to Europe. International Journal of Environmental Research and Public Health, 14(9), 1050. https://doi.org/10.3390/ijerph14091050
  • Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. https://doi.org/10.1126/sciadv.aap8060
  • Wu, R. T., Cai, Y. F., Chen, Y. X., Yang, Y. W., Xing, S. C., & Liao, X. d (2021). Occurrence of microplastic in livestock and poultry manure in South China. Environmental Pollution (Barking, Essex: 1987), 277, 116790. https://doi.org/10.1016/j.envpol.2021.116790
  • Wu, X., Hou, H., Liu, Y., Yin, S., Bian, S., Liang, S., Wan, C., Yuan, S., Xiao, K., Liu, B., Hu, J., & Yang, J. (2022). Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. Journal of Hazardous Materials, 422, 126834. https://doi.org/10.1016/j.jhazmat.2021.126834
  • Wu, X., Liu, Y., Yin, S., Xiao, K., Xiong, Q., Bian, S., Liang, S., Hou, H., Hu, J., & Yang, J. (2020). Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environmental Pollution (Barking, Essex: 1987), 266(Pt 1), 115159. https://doi.org/10.1016/j.envpol.2020.115159
  • Wypych, G. (Ed.). (2015). 8 - UV degradation & stabilization of industrial products. In Handbook of UV degradation and stabilization (2nd ed., pp. 293–347). ChemTec Publishing. https://doi.org/10.1016/B978-1-895198-86-7.50010-3
  • Yang, J., Song, K., Tu, C., Li, L., Feng, Y., Li, R., Xu, H., & Luo, Y. (2023). Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China. The Science of the Total Environment, 858(Pt 2), 159774. https://doi.org/10.1016/j.scitotenv.2022.159774
  • Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 11(12), 1443. https://doi.org/10.3390/rs11121443
  • Yu, H., Zhang, X., Hu, J., Peng, J., & Qu, J. (2020). Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environmental Pollution (Barking, Essex: 1987), 265(Pt A), 114830. https://doi.org/10.1016/j.envpol.2020.114830
  • Zeb, A., Liu, W., Meng, L., Lian, J., Wang, Q., Lian, Y., Chen, C., & Wu, J. (2022). Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A study involving physio-biochemical properties and metabolomic profiles. Journal of Hazardous Materials, 424(Pt C), 127405. https://doi.org/10.1016/j.jhazmat.2021.127405
  • Zhang, Y., Gao, T., Kang, S., & Sillanpää, M. (2019). Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution (Barking, Essex: 1987), 254(Pt A), 112953. https://doi.org/10.1016/j.envpol.2019.07.121
  • Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T., & Sillanpää, M. (2020). Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 203, 103118. https://doi.org/10.1016/j.earscirev.2020.103118
  • Zhang, Y., Yang, X., Luo, Z. x., Lai, J. l., Li, C., & Luo, X. g (2022). Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. The Science of the Total Environment, 806(Pt 4), 150895. https://doi.org/10.1016/j.scitotenv.2021.150895
  • Zhang, Q., Zhao, M., Meng, F., Xiao, Y., Dai, W., & Luan, Y. (2021). Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics, 9(8), 179. https://doi.org/10.3390/toxics9080179
  • Zhang, J., Zou, G., Wang, X., Ding, W., Xu, L., Liu, B., Mu, Y., Zhu, X., Song, L., & Chen, Y. (2021). Exploring the occurrence characteristics of microplastics in typical maize farmland soils with long-term plastic film mulching in Northern China. Frontiers in Marine Science, 8, 1843. https://www.frontiersin.org/article/10.3389/fmars.2021.800087 https://doi.org/10.3389/fmars.2021.800087
  • Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 235. https://doi.org/10.3389/FENVS.2021.675803/BIBTEX
  • Zhou, C.-Q., Lu, C.-H., Mai, L., Bao, L.-J., Liu, L.-Y., & Zeng, E. Y. (2021). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials, 401, 123412. https://doi.org/10.1016/j.jhazmat.2020.123412
  • Zhu, J., Liu, S., Wang, H., Wang, D., Zhu, Y., Wang, J., He, Y., Zheng, Q., & Zhan, X. (2022). Microplastic particles alter wheat rhizosphere soil microbial community composition and function. Journal of Hazardous Materials, 436, 129176. https://doi.org/10.1016/j.jhazmat.2022.129176
  • Ziajahromi, S., Neale, P. A., & Leusch, F. D. L. (2016). Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 74(10), 2253–2269. https://doi.org/10.2166/wst.2016.414
  • Zong, X., Zhang, J., Zhu, J., Zhang, L., Jiang, L., Yin, Y., & Guo, H. (2021). Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 217, 112217. https://doi.org/10.1016/j.ecoenv.2021.112217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.