427
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Microalgae biofilm carbon and nitrogen sequestration as a tool for economic and environmental sustainability

ORCID Icon, &
Pages 2055-2070 | Published online: 07 May 2023

References

  • Ahmed, S. F., Rafa, N., Mofijur, M., Badruddin, I. A., Inayat, A., Ali, M. S., Farrok, O., & Yunus Khan, T. M. (2021). Biohydrogen production from biomass sources: metabolic pathways and economic analysis. Frontiers in Energy Research, 9, 1–13. https://doi.org/10.3389/fenrg.2021.753878
  • Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2018). Microalgae-bacteria biofilms: A sustainable synergistic approach in remediation of acid mine drainage. Applied Microbiology and Biotechnology, 102(3), 1131–1144. https://doi.org/10.1007/s00253-017-8693-7
  • Ahmad, A., Hassan, S., & Banat, F. (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered, 13(4), 9521–9547. https://doi.org/10.1080/21655979.2022.2061148
  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://www.mdpi.com/2073-4441/13/19/2660 https://doi.org/10.3390/w13192660
  • Alves, A., Sousa, E., Kijjoa, A., & Pinto, M. (2020). Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules, 25(11), 2536. https://www.mdpi.com/1420-3049/25/11/2536 https://doi.org/10.3390/molecules25112536
  • Amenorfenyo, D. K., Huang, X., Zhang, Y., Zeng, Q., Zhang, N., Ren, J., & Huang, Q. (2019). Microalgae brewery wastewater treatment: Potentials, benefits and the challenges. International Journal of Environmental Research and Public Health, 16(11), 1910. https://doi.org/10.3390/ijerph16111910
  • Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & El-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020
  • Anerao, P., Kumar, H., Kaware, R., Prasad, K., Kumar, M., & Singh, L. (2022). Algal-based biofuel production: Opportunities, challenges, and prospects. In P. Chowdhary, N. Khanna, S. Pandit, & R. Kumar (Eds.), Bio-clean energy technologies (Vol. 1, pp. 155–180). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8090-8_7
  • Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164–173. https://doi.org/10.1016/j.algal.2013.01.004
  • Bhatt, A., Khanchandani, M., Rana, M. S., & Prajapati, S. K. (2022). Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, 370, 133456. https://doi.org/10.1016/j.jclepro.2022.133456
  • Bošnjaković, M., & Sinaga, N. (2020). The perspective of large-scale production of algae biodiesel. Applied Sciences, 10(22), 8181. https://www.mdpi.com/2076-3417/10/22/8181 https://doi.org/10.3390/app10228181
  • Branco-Vieira, M., Mata, T. M., Martins, A. A., Freitas, M. A. V., & Caetano, N. S. (2020). Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Reports, 6, 325–332. https://doi.org/10.1016/j.egyr.2020.11.156
  • Braun, J. C. A., & Colla, L. M. (2023). Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Research, 16(1), 289–310. https://doi.org/10.1007/s12155-022-10456-8
  • Buchner, G. A., Zimmermann, A. W., Hohgräve, A. E., & Schomäcker, R. (2018). Techno-economic assessment framework for the chemical industry—based on technology readiness levels. Industrial & Engineering Chemistry Research, 57(25), 8502–8517. https://doi.org/10.1021/acs.iecr.8b01248
  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002
  • Cassia, R., Nocioni, M., Correa-Aragunde, N., & Lamattina, L. (2018). Climate change and the impact of greenhouse gasses: CO(2) and NO, friends and foes of plant oxidative stress. Frontiers in Plant Science, 9, 273. https://doi.org/10.3389/fpls.2018.00273
  • Chanana, I., Kaur, P., Kumar, L., Kumar, P., & Kulshreshtha, S. (2023). Advancements in microalgal biorefinery technologies and their economic analysis and positioning in energy resource market. Fermentation, 9(3), 202. https://www.mdpi.com/2311-5637/9/3/202 https://doi.org/10.3390/fermentation9030202
  • Cheah, Y. T., & Chan, D. J. C. (2021). Physiology of microalgal biofilm: A review on prediction of adhesion on substrates. Bioengineered, 12(1), 7577–7599. https://doi.org/10.1080/21655979.2021.1980671
  • Dalei, N. N., & Joshi, J. (2022). Potential matching of carbon capture storage and utilization (CCSU) as enhanced oil recovery in perspective to Indian oil refineries. Clean Technologies and Environmental Policy, 24(9), 2701–2717. https://doi.org/10.1007/s10098-022-02359-1
  • Daneshvar, E., Sik Ok, Y., Tavakoli, S., Sarkar, B., Shaheen, S. M., Hong, H., Luo, Y., Rinklebe, J., Song, H., & Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource Technology, 329, 124870. https://doi.org/10.1016/j.biortech.2021.124870
  • Do, T.-T., Ong, B.-N., Le, T.-L., Nguyen, T.-C., Tran-Thi, B.-H., Thu Hien, B. T., Melkonian, M., & Tran, H.-D. (2021). Growth of Haematococcus pluvialis on a small-scale angled porous substrate photobioreactor for green stage biomass. Applied Sciences, 11(4), 1788. https://www.mdpi.com/2076-3417/11/4/1788 https://doi.org/10.3390/app11041788
  • Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N., & Sukhikh, S. (2020). Microalgae: A promising source of valuable bioproducts. Biomolecules, 10(8), 1153. https://www.mdpi.com/2218-273X/10/8/1153 https://doi.org/10.3390/biom10081153
  • Dorgham, M. (2014). Effects of eutrophication. In A. A. Ansari, G. S. Singh, G. R. Lanza, & W. Rast (Eds.), Eutrophication: Causes, Consequences and Control: Volume (Vol. 2, pp. 29–44). Netherlands: Springer. https://doi.org/10.1007/978-94-007-7814-6_3
  • Ducklow, H., Steinberg, D., & Buesseler, K. (2001). Upper ocean carbon export and the biological pump. Oceanography, 14(4), 50–58. https://doi.org/10.5670/oceanog.2001.06
  • Eloka-Eboka, A. C., & Inambao, F. L. (2017). Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Applied Energy, 195, 1100–1111. https://doi.org/10.1016/j.apenergy.2017.03.071
  • Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., & Butterbach-Bahl, K. (2011). Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 3(5), 281–290. https://doi.org/10.1016/j.cosust.2011.08.012
  • Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: A review. Environmental Chemistry Letters, 20(5), 2853–2927. https://doi.org/10.1007/s10311-022-01468-z
  • Ferrón, S., Ho, D. T., Johnson, Z. I., & Huntley, M. E. (2012). Air–water fluxes of N2O and CH4 during Microalgae (Staurosira sp.) cultivation in an open raceway pond. Environmental Science & Technology, 46(19), 10842–10848. https://doi.org/10.1021/es302396j
  • Finlay, K., Vogt, R. J., Bogard, M. J., Wissel, B., Tutolo, B. M., Simpson, G. L., & Leavitt, P. R. (2015). Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming. Nature, 519(7542), 215–218. https://doi.org/10.1038/nature14172
  • Ganesan, R., Manigandan, S., Samuel, M. S., Shanmuganathan, R., Brindhadevi, K., Lan Chi, N. T., Duc, P. A., & Pugazhendhi, A. (2020). A review on prospective production of biofuel from microalgae. Biotechnology Reports (Amsterdam, Netherlands), 27, e00509. https://doi.org/10.1016/j.btre.2020.e00509
  • Gao, Z., Zhang, J., Li, F., Zheng, J., & Xu, G. (2021). Effect of oils in feed on the production performance and egg quality of laying hens. Animals, 11(12), 3482. https://doi.org/10.3390/ani11123482
  • Genkai-Kato, M., Vadeboncoeur, Y., Liboriussen, L., & Jeppesen, E. (2012). Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes. Ecology, 93(3), 619–631. https://doi.org/10.2307/23143949
  • Gerotto, C., Norici, A., & Giordano, M. (2020). Toward enhanced fixation of CO2 in aquatic biomass: focus on microalgae. Frontiers in Energy Research, 8, 1–23. https://doi.org/10.3389/fenrg.2020.00213
  • Godbold, J. A., & Calosi, P. (2013). Ocean acidification and climate change: Advances in ecology and evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1627), 20120448. https://doi.org/10.1098/rstb.2012.0448
  • Gonçalves, C. F., Menegol, T., & Rech, R. (2019). Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. Biocatalysis and Agricultural Biotechnology, 18, 101032. https://doi.org/10.1016/j.bcab.2019.101032
  • Hamidi, H., Mohammadian, E., Haddad, A. S., Rafati, R., Azdarpour, A., Ghahri, P., Pradana, A. P., Andoni, B., & Akhmetov, C. (2017). Effects of ultrasonic waves on carbon dioxide solubility in brine at different pressures and temperatures. Petroleum Science, 14(3), 597–604. https://doi.org/10.1007/s12182-017-0165-2
  • Han, P., Lu, Q., Fan, L., & Zhou, W. (2019). A review on the use of microalgae for sustainable aquaculture. Applied Sciences, 9(11), 2377. https://www.mdpi.com/2076-3417/9/11/2377 https://doi.org/10.3390/app9112377
  • Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered, 13(3), 6521–6557. https://doi.org/10.1080/21655979.2022.2035986
  • Havas, F., Krispin, S., Cohen, M., Loing, E., Farge, M., Suere, T., & Attia-Vigneau, J. (2022). A Dunaliella salina extract counteracts skin aging under intense solar irradiation thanks to its antiglycation and anti-inflammatory properties. Mar Drugs, 20(2), 104. https://doi.org/10.3390/md20020104
  • He, J., Balasubramanian, R., Burger, D., Hicks, K., Kuylenstierna, J., & Palani, S. (2011). Dry and wet atmospheric deposition of nitrogen and phosphorus in Singapore. Atmospheric Environment, 45(16), 2760–2768. https://doi.org/10.1016/j.atmosenv.2011.02.036
  • Hoffman, J., Pate, R., Drennen, T., & Quinn, J. (2017). Techno-economic assessment of open microalgae production systems. Algal Research, 23, 51–57. https://doi.org/10.1016/j.algal.2017.01.005
  • Iavorivska, L., Boyer, E. W., & DeWalle, D. R. (2016). Atmospheric deposition of organic carbon via precipitation. Atmospheric Environment, 146, 153–163. https://doi.org/10.1016/j.atmosenv.2016.06.006
  • Ighalo, J. O., Dulta, K., Kurniawan, S. B., Omoarukhe, F. O., Ewuzie, U., Eshiemogie, S. O., Ojo, A. U., & Abdullah, S. R. S. (2022). Progress in microalgae application for CO2 sequestration. Cleaner Chemical Engineering, 3, 100044. https://doi.org/10.1016/j.clce.2022.100044
  • Jain, R., Urban, L., Balbach, H., & Webb, M. D. (2012). Chapter Thirteen - Contemporary issues in environmental assessment. In R. Jain, L. Urban, H. Balbach, & M. D. Webb (Eds.), Handbook of environmental engineering assessment (pp. 361–447). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-388444-2.00013-0
  • Jin, D., Hoagland, P., & Buesseler, K. O. (2020). The value of scientific research on the ocean’s biological carbon pump. The Science of the Total Environment, 749, 141357. https://doi.org/10.1016/j.scitotenv.2020.141357
  • Kaushik, M. (2006). Acid rain–A contemporary world problem. BBSBEC.
  • Keller, D. P., Feng, E. Y., & Oschlies, A. (2014). Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nature Communications, 5, 3304. https://doi.org/10.1038/ncomms4304
  • Khaligh, S. F., & Asoodeh, A. (2022). Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech, 12(10), 260. https://doi.org/10.1007/s13205-022-03327-8
  • Kumar, A., Singh, P., Raizada, P., & Hussain, C. M. (2022). Impact of COVID-19 on greenhouse gases emissions: A critical review. The Science of the Total Environment, 806(1), 150349. https://doi.org/10.1016/j.scitotenv.2021.150349
  • Kumar, M., Sun, Y., Rathour, R., Pandey, A., Thakur, I. S., & Tsang, D. C. W. (2020). Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. The Science of the Total Environment, 716, 137116. https://doi.org/10.1016/j.scitotenv.2020.137116
  • Liu, J., Wu, L., Gong, L., Wu, Y., & Tanentzap, A. J. (2023). Phototrophic biofilms transform soil-dissolved organic matter similarly despite compositional and environmental differences. Environmental Science & Technology, 57(11), 4679–4689. https://doi.org/10.1021/acs.est.2c08541
  • Llamas, B., Suárez-Rodríguez, M. C., González-López, C. V., Mora, P., & Acién, F. G. (2021). Techno-economic analysis of microalgae related processes for CO2 bio-fixation. Algal Research, 57, 102339. https://doi.org/10.1016/j.algal.2021.102339
  • López, G., Yate, C., Ramos, F. A., Cala, M. P., Restrepo, S., & Baena, S. (2019). Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Scientific Reports, 9(1), 10791. https://doi.org/10.1038/s41598-019-46645-3
  • Luo, Z., Hu, S., & Chen, D. (2018). The trends of aquacultural nitrogen budget and its environmental implications in China. Scientific Reports, 8(1), 10877. https://doi.org/10.1038/s41598-018-29214-y
  • Magalhães, I. B., Ferreira, J., de Siqueira Castro, J., Assis, L. R. d., & Calijuri, M. L. (2021). Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. Algal Research, 57, 102346. https://doi.org/10.1016/j.algal.2021.102346
  • Marín, D., Posadas, E., Cano, P., Pérez, V., Lebrero, R., & Muñoz, R. (2018). Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond. Bioresource Technology, 255, 354–358. https://doi.org/10.1016/j.biortech.2018.01.136
  • Marino, T., Iovine, A., Casella, P., Martino, M., Chianese, S., Larocca, V., Musmarra, D., & Molino, A. (2020). From haematococcus pluvialis microalgae a powerful antioxidant for cosmetic applications. Chemical Engineering Transactions, 79, 271276. https://doi.org/10.3303/CET2079046
  • Martínez-Ruiz, M., Martínez-González, C. A., Kim, D. H., Santiesteban-Romero, B., Reyes-Pardo, H., Villaseñor-Zepeda, K. R., Meléndez-Sánchez, E. R., Ramírez-Gamboa, D., Díaz-Zamorano, A. L., Sosa-Hernández, J. E., Coronado-Apodaca, K. G., Gámez-Méndez, A. M., Iqbal, H. M. N., & Parra-Saldivar, R. (2022). Microalgae bioactive compounds to topical applications products–A review. Molecules, 27(11), 3512. https://doi.org/10.3390/molecules27113512
  • Martins, C. F., Ribeiro, D. M., Costa, M., Coelho, D., Alfaia, C. M., Lordelo, M., Almeida, A. M., Freire, J. P. B., & Prates, J. A. M. (2021). Using microalgae as a sustainable feed resource to enhance quality and nutritional value of pork and poultry meat. Foods, 10(12), 2933. https://doi.org/10.3390/foods10122933
  • Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10(2), 115–132. https://doi.org/10.1080/19490976.2018.1505176
  • Mavrommatis, A., Mitsiopoulou, C., Christodoulou, C., Kariampa, P., Simoni, M., Righi, F., & Tsiplakou, E. (2021). Effects of supplementing rumen-protected methionine and lysine on milk performance and oxidative status of dairy ewes. Antioxidants, 10(5), 654. https://doi.org/10.3390/antiox10050654
  • Mintz-Woo, K., & Lane, J. (2021). Why and where to fund carbon capture and storage. Science and Engineering Ethics, 27(6), 70. https://doi.org/10.1007/s11948-021-00344-3
  • Morales, M., Sánchez, L., & Revah, S. (2018). The impact of environmental factors on CO2 fixation by microalgae. FEMS Microbiology Letters, 365(3), 1–11. https://doi.org/10.1093/femsle/fnx262
  • Moreno Osorio, J. H., Pollio, A., Frunzo, L., Lens, P. N. L., & Esposito, G. (2021). A review of microalgal biofilm technologies: definition, applications, settings and analysis. Frontiers in Chemical Engineering, 3, 1–23. https://doi.org/10.3389/fceng.2021.737710
  • Morocho-Jácome, A. L., Ruscinc, N., Martinez, R. M., de Carvalho, J. C. M., Santos de Almeida, T., Rosado, C., Costa, J. G., Velasco, M. V. R., & Baby, A. R. (2020). (Bio)Technological aspects of microalgae pigments for cosmetics. Applied Microbiology and Biotechnology, 104(22), 9513–9522. https://doi.org/10.1007/s00253-020-10936-x
  • Musa, M., Ayoko, G. A., Ward, A., Rösch, C., Brown, R. J., & Rainey, T. J. (2019). Factors affecting microalgae production for biofuels and the potentials of chemometric methods in assessing and optimizing productivity. Cells, 8(8), 851. https://www.mdpi.com/2073-4409/8/8/851 https://doi.org/10.3390/cells8080851
  • Nawkarkar, P., Ganesan, & A., Kumar, S. (2022). Chapter 32 - Carbon dioxide capture for biofuel production. In S. Sahay (Ed.), Handbook of biofuels (pp. 605–619). Academic Press. https://doi.org/10.1016/B978-0-12-822810-4.00032-4
  • Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. The Science of the Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080
  • Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100112. https://doi.org/10.1016/j.nexus.2022.100112
  • Okeke, E. S., Ejeromedoghene, O., Okoye, C. O., Ezeorba, T. P. C., Nyaruaba, R., Ikechukwu, C. K., Oladipo, A., & Orege, J. I. (2022). Microalgae biorefinery: An integrated route for the sustainable production of high-value-added products. Energy Conversion and Management: X, 16, 100323. https://doi.org/10.1016/j.ecmx.2022.100323
  • Onyeaka, H., Miri, T., Obileke, K., Hart, A., Anumudu, C., & Al-Sharify, Z. T. (2021). Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, 1, 100007. https://doi.org/10.1016/j.ccst.2021.100007
  • Ota, M., Takenaka, M., Sato, Y., Smith, R. L., & Inomata, H. (2015). Effects of light intensity and temperature on photoautotrophic growth of a green microalga, Chlorococcum littorale. Biotechnology Reports (Amsterdam, Netherlands), 7, 24–29. https://doi.org/10.1016/j.btre.2015.05.001
  • Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  • Pacheco, D., Rocha, A. C., Pereira, L., & Verdelhos, T. (2020). Microalgae water bioremediation: Trends and hot topics. Applied Sciences, 10(5), 1886. https://www.mdpi.com/2076-3417/10/5/1886 https://doi.org/10.3390/app10051886
  • Pajot, A., Hao Huynh, G., Picot, L., Marchal, L., & Nicolau, E. (2022). Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes. Mar Drugs,.20(4), 222. https://doi.org/10.3390/md20040222
  • Pal, P., Chew, K. W., Yen, H.-W., Lim, J. W., Lam, M. K., & Show, P. L. (2019). Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability, 11(19), 5424. https://www.mdpi.com/2071-1050/11/19/5424 https://doi.org/10.3390/su11195424
  • Pathak, J., Maurya, P. K., Singh, S. P., Häder, D.-P., Sinha., & R. P., Rajneesh. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Frontiers in Environmental Science, 6, 1–13. https://doi.org/10.3389/fenvs.2018.00007
  • Patnaik, R., & Mallick, N. (2021). Microalgal biodiesel production: Realizing the sustainability index. Frontiers in Bioengineering and Biotechnology, 9, 620777. https://doi.org/10.3389/fbioe.2021.620777
  • Pérez-Pérez, M. E., Lemaire, S. D., & Crespo, J. L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiology, 160(1), 156–164. https://doi.org/10.1104/pp.112.199992
  • Plouviez, M., Shilton, A., Packer, M. A., & Guieysse, B. (2017). N2O emissions during microalgae outdoor cultivation in 50L column photobioreactors. Algal Research, 26, 348–353. https://doi.org/10.1016/j.algal.2017.08.008
  • Ponnampalam, E. N., Sinclair, A. J., & Holman, B. W. B. (2021). The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods, 10(6), 1358. https://www.mdpi.com/2304-8158/10/6/1358 https://doi.org/10.3390/foods10061358
  • Poschenrieder, C., Fernández, J. A., Rubio, L., Pérez, L., Terés, J., & Barceló, J. (2018). Transport and use of bicarbonate in plants: current knowledge and challenges ahead. International Journal of Molecular Sciences, 19(5), 1352. https://doi.org/10.3390/ijms19051352
  • Premaratne, M., Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Nimarshana, P. H. V., & Ariyadasa, T. U. (2021). Nitrogen-limited cultivation of locally isolated Desmodesmus sp. for sequestration of CO2 from simulated cement flue gas and generation of feedstock for biofuel production. Journal of Environmental Chemical Engineering, 9(4), 105765. https://doi.org/10.1016/j.jece.2021.105765
  • Qie, F., Zhu, J., Rong, J., & Zong, B. (2019). Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production. Bioresource Technology, 292, 122037. https://doi.org/10.1016/j.biortech.2019.122037
  • Remize, M., Brunel, Y., Silva, J. L., Berthon, J. Y., & Filaire, E. (2021). Microalgae n-3 PUFAs production and use in food and feed industries. Marine Drugs. 19(2), 113. https://doi.org/10.3390/md19020113
  • Ruocco, N., Costantini, S., Guariniello, S., & Costantini, M. (2016). Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules, 21(5), 551. https://www.mdpi.com/1420-3049/21/5/551 https://doi.org/10.3390/molecules21050551
  • Saadaoui, I., Rasheed, R., Aguilar, A., Cherif, M., Al Jabri, H., Sayadi, S., & Manning, S. R. (2021). Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. Journal of Animal Science and Biotechnology, 12(1), 76. https://doi.org/10.1186/s40104-021-00593-z
  • Schade, S., & Meier, T. (2021). Techno-economic assessment of microalgae cultivation in a tubular photobioreactor for food in a humid continental climate. Clean Technologies and Environmental Policy, 23(5), 1475–1492. https://doi.org/10.1007/s10098-021-02042-x
  • Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54(4), 745–758. https://doi.org/10.1007/s00254-007-0860-1
  • Sorimachi, K. (2022). Innovative method for CO(2) fixation and storage. Scientific Reports, 12(1), 1694. https://doi.org/10.1038/s41598-022-05151-9
  • Stoyneva-Gärtner, M., Uzunov, B., & Gärtner, G. (2020). Enigmatic microalgae from aeroterrestrial and extreme habitats in cosmetics: The potential of the untapped natural sources. Cosmetics, 7(2), 27. https://www.mdpi.com/2079-9284/7/2/27 https://doi.org/10.3390/cosmetics7020027
  • Subramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing carbon footprint of algal biorefinery: A techno-economic perspective. RSC Advances, 6(77), 72897–72904. https://doi.org/10.1039/C6RA14611B
  • Sun, S., Ge, Z., Zhao, Y., Hu, C., Zhang, H., & Ping, L. (2016). Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. Energy, 97, 229–237. https://doi.org/10.1016/j.energy.2015.12.126
  • Ugya, A. Y. (2023). How changing environments alter the microbial composition and ecological response in marine biofilms: A mini review. Egyptian Journal of Basic and Applied Sciences, 10(1), 95–106. https://doi.org/10.1080/2314808X.2022.2154111
  • Ugya, A. Y., & Meguellati, K. (2022). Microalgae biomass modelling and optimization for sustainable biotechnology–A concise review. Journal of Ecological Engineering, 23(9), 309–318. https://doi.org/10.12911/22998993/150627
  • Ugya, A. Y., Ajibade, F. O., & Hua, X. (2021). The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna. Journal of Environmental Management, 295, 113109. https://doi.org/10.1016/j.jenvman.2021.113109
  • Ugya, A. Y., Ari, H. A., & Hua, X. (2021). Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ecotoxicology and Environmental Safety, 221, 112468. https://doi.org/10.1016/j.ecoenv.2021.112468
  • Ummalyma, S. B., Sirohi, R., Udayan, A., Yadav, P., Raj, A., Sim, S. J., & Pandey, A. (2022). Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: A review. Phytochemistry Reviews, https://doi.org/10.1007/s11101-022-09814-3
  • Vanegas, C., & Bartlett, J. (2013). Green energy from marine algae: Biogas production and composition from the anaerobic digestion of Irish seaweed species. Environmental Technology, 34(13–16), 2277–2283. https://doi.org/10.1080/09593330.2013.765922
  • Vázquez-Romero, B., Perales, J. A., Pereira, H., Barbosa, M., & Ruiz, J. (2022). Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. The Science of the Total Environment, 837, 155742. https://doi.org/10.1016/j.scitotenv.2022.155742
  • Verma, M., & Mishra, V. (2020). An introduction to algal biofuels. In N. Srivastava, M. Srivastava, P. K. Mishra, & V. K. Gupta (Eds.), Microbial strategies for techno-economic biofuel production (pp. 1–34). Springer Nature. https://doi.org/10.1007/978-981-15-7190-9_1
  • Viswanaathan, S., Perumal, P. K., & Sundaram, S. (2022). Integrated approach for carbon sequestration and wastewater treatment using algal & bacterial consortia: Opportunities and challenges. Sustainability, 14(3), 1075. https://www.mdpi.com/2071-1050/14/3/1075 https://doi.org/10.3390/su14031075
  • Walsh, B., Ciais, P., Janssens, I. A., Peñuelas, J., Riahi, K., Rydzak, F., van Vuuren, D. P., & Obersteiner, M. (2017). Pathways for balancing CO(2) emissions and sinks. Nature Communications, 8, 14856. https://doi.org/10.1038/ncomms14856
  • Wang, Y., Zhang, G., Huang, Y., Guo, M., Song, J., Zhang, T., Long, Y., Wang, B., & Liu, H. (2022). A potential biofertilizer—siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis. Frontiers in Microbiology, 13, 870413. https://doi.org/10.3389/fmicb.2022.870413
  • You, N., Deng, S., Wang, C., Ngo, H. H., Wang, X., Yu, H., Tang, L., & Han, J. (2023). Review and opinions on the research, development and application of microalgae culture technologies for resource recovery from wastewater. Water, 15(6), 1192. https://www.mdpi.com/2073-4441/15/6/1192 https://doi.org/10.3390/w15061192
  • You, X., Yang, L., Zhou, X., & Zhang, Y. (2022). Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environmental Research, 209, 112860. https://doi.org/10.1016/j.envres.2022.112860
  • Zhang, Q., Li, Y., Wang, M., Wang, K., Meng, F., Liu, L., Zhao, Y., Ma, L., Zhu, Q., Xu, W., & Zhang, F. (2021). Atmospheric nitrogen deposition: A review of quantification methods and its spatial pattern derived from the global monitoring networks. Ecotoxicology and Environmental Safety, 216, 112180. https://doi.org/10.1016/j.ecoenv.2021.112180
  • Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. https://doi.org/10.3389/fmicb.2022.970028
  • Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4, 4. https://doi.org/10.3389/fbioe.2016.00004
  • Zieliński, M., Dębowski, M., Kazimierowicz, J., & Świca, I. (2023). Microalgal carbon dioxide (CO2) capture and utilization from the European Union perspective. Energies, 16(3), 1446. https://www.mdpi.com/1996-1073/16/3/1446 https://doi.org/10.3390/en16031446

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.