987
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Interactions between cadmium and nutrients and their implications for safe crop production in Cd-contaminated soils

, , &
Pages 2071-2091 | Published online: 11 May 2023

References

  • Ahmad, J., Ali, A. A., Baig, M. A., Iqbal, M., Haq, I., & Qureshi, M. I. (2019). Cadmium toxicity and tolerance in plants: Role of phytochelatins in cadmium stress tolerance in plants. Elsevier Inc.https://doi.org/10.1016/B978-0-12-814864-8.00008-5
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., & Alam, P. (2018). Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma, 255(1), 79–93. https://doi.org/10.1007/s00709-017-1132-x
  • Auobi Amirabad, S., Behtash, F., & Vafaee, Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environmental Science and Pollution Research International, 27(11), 12476–12490. https://doi.org/10.1007/s11356-020-07751-2
  • Bagale, S. (2021). Nutrient management for soybean crops. International Journal of Agronomy, 2021, 1–10. https://doi.org/10.1155/2021/3304634
  • Bali, A. S., Sidhu, G. P. S., & Kumar, V. (2020). Root exudates ameliorate cadmium tolerance in plants: A review. Environmental Chemistry Letters, 18(4), 1243–1275. https://doi.org/10.1007/s10311-020-01012-x
  • Bournier, M., Tissot, N., Mari, S., Boucherez, J., Lacombe, E., Briat, J. F., & Gaymard, F. (2013). Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. The Journal of Biological Chemistry, 288(31), 22670–22680. https://doi.org/10.1074/jbc.M113.482281
  • Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M. M., Costantino, P., & Cardarelli, M. (2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 66(13), 3815–3829. https://doi.org/10.1093/jxb/erv185
  • Chang, J. D., Huang, S., Yamaji, N., Zhang, W., Ma, J. F., & Zhao, F. J. (2020). OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant, Cell & Environment, 43(10), 2476–2491. https://doi.org/10.1111/pce.13843
  • Chen, H., Yang, R., Zhang, X., Chen, Y., Xia, Y., & Xu, X. (2021). Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Scientia Horticulturae, 288, 110410. https://doi.org/10.1016/j.scienta.2021.110410
  • Chen, J., Wu, F. H., Shang, Y. T., Wang, W. H., Hu, W. J., Simon, M., Liu, X., Shangguan, Z. P., & Zheng, H. L. (2015). Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. Journal of Experimental Botany, 66(21), 6605–6622. https://doi.org/10.1093/jxb/erv368
  • Chen, L., Long, C., Wang, D., & Yang, J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere, 242, 125112. https://doi.org/10.1016/j.chemosphere.2019.125112
  • Chen, W., Tang, L., Wang, J., Zhu, H., Jin, J., Yang, J., & Fan, W. (2022). Research advances in the mutual mechanisms regulating response of plant roots to phosphate deficiency and aluminum toxicity. International Journal of Molecular Sciences, 23, 1137. https://doi.org/10.3390/ijms23031137
  • Cui, W., Li, L., Gao, Z., Wu, H., Xie, Y., & Shen, W. (2012). Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. Journal of Experimental Botany, 63(15), 5521–5534. https://doi.org/10.1093/jxb/ers201
  • De Bont, L., Mu, X., Wei, B., & Han, Y. (2022). Abiotic stress-triggered oxidative challenges: Where does H2S act? Journal of Genetics and Genomics, 49(8), 748–755. https://doi.org/10.1016/j.jgg.2022.02.019
  • De la Peña, M., Marín-Peña, A. J., Urmeneta, L., Coleto, I., Castillo-González, J., van Liempd, S. M., Falcón-Pérez, J. M., Álvarez-Fernández, A., González-Moro, M. B., & Marino, D. (2022). Ammonium nutrition interacts with iron homeostasis in Brachypodium distachyon. Journal of Experimental Botany, 73(1), 263–274. https://doi.org/10.1093/jxb/erab427
  • Deng, X., Chen, Y., Yang, Y., Lu, L., Yuan, X., Zeng, H., & Zeng, Q. (2020). Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer. Environmental Pollution (Barking, Essex: 1987), 262, 114289. https://doi.org/10.1016/j.envpol.2020.114289
  • Du, S. T., Lu, Q., Liu, L., Wang, Y., & Li, J. (2022). Rhodococcus qingshengii facilitates the phytoextraction of Zn, Cd, Ni, and Pb from soils by Sedum alfredii Hance. Journal of Hazardous Materials, 424(Pt C), 127638. https://doi.org/10.1016/j.jhazmat.2021.127638
  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 756120. https://doi.org/10.1155/2015/756120
  • Fan, S. K., Fang, X. Z., Guan, M. Y., Ye, Y. Q., Lin, X. Y., Du, S. T., & Jin, C. W. (2014). Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science, 5, 721. https://doi.org/10.3389/fpls.2014.00721
  • Fan, S. K., Zhu, J., Tian, W. H., Guan, M. Y., Fang, X. Z., & Jin, C. W. (2017). Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage. Journal of Zhejiang University. Science. B, 18(10), 897–905. https://doi.org/10.1631/jzus.B1600272
  • Farhat, F., Arfan, M., Wang, X., Tariq, A., Kamran, M., Tabassum, H. N., Tariq, I., Mora-Poblete, F., Iqbal, R., El-Sabrout, A. M., & Elansary, H. O. (2022). The impact of bio-stimulants on Cd-stressed wheat (Triticum aestivum L.): Insights into growth, chlorophyll fluorescence, Cd accumulation, and osmolyte regulation. Frontiers in Plant Science, 13, 850567. https://doi.org/10.3389/fpls.2022.850567
  • Gao, F., & Dubos, C. (2021). Transcriptional integration of plant responses to iron availability. Journal of Experimental Botany, 72(6), 2056–2070. https://doi.org/10.1093/jxb/eraa556
  • Garza-Alonso, C. A., Guillermo, N. M., Gutierrez-Diez, A., GarcíA-LóPez, J. I., VáZquez-Alvarado, R. E., Lopez-Jimenez, A., & Olivares-SáEnz, E. (2020). Physicochemical characteristics, minerals, phenolic compounds, and antioxidant capacity in fig tree fruits with macronutrient deficiencies. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1585–1599. https://doi.org/10.15835/nbha48311867
  • Gaur, S., Kumar, J., Kumar, D., Chauhan, D. K., Prasad, S. M., & Srivastava, P. K. (2020). Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicology and Environmental Safety, 202, 110885. https://doi.org/10.1016/j.ecoenv.2020.110885
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17, 3782. https://doi.org/10.3390/ijerph17113782
  • Gu, Q., Wang, C., Xiao, Q., Chen, Z., & Han, Y. (2021). Melatonin confers plant cadmium tolerance: An update. International Journal of Molecular Sciences, 22, 11704. https://doi.org/10.3390/ijms222111704
  • Guan, M. Y., Chen, M. X., & Cao, Z. Z. (2021). NRT2. 1, a major contributor to cadmium uptake controlled by high-affinity nitrate transporters. Ecotoxicology and Environmental Safety, 218, 112269. https://doi.org/10.1016/j.ecoenv.2021.112269
  • Guan, M. Y., Zhu, Y. X., Liu, X. X., & Jin, C. W. (2019). Induction of S-nitrosoglutathione reductase reduces root cadmium uptake by inhibiting Iron-regulated transporter 1. Plant and Soil, 438(1-2), 251–262. https://doi.org/10.1007/s11104-019-04014-z
  • Guo, F., Ding, C., Zhou, Z., Huang, G., & Wang, X. (2018). Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotoxicology and Environmental Safety, 148, 303–310. https://doi.org/10.1016/j.ecoenv.2017.10.043
  • Guo, J., Ye, D., Zhang, X., Huang, H., Wang, Y., Zheng, Z., Li, T., & Yu, H. (2022). Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. Chemosphere, 287(Pt 4), 132374. https://doi.org/10.1016/j.chemosphere.2021.132374
  • Guo, Y., Mao, K., Cao, H., Ali, W., Lei, D., Teng, D., Chang, C., Yang, X., Yang, Q., Niazi, N. K., Feng, X., & Zhang, H. (2021). Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environmental Pollution (Barking, Essex: 1987), 268(Pt A), 115829. https://doi.org/10.1016/j.envpol.2020.115829
  • Hafeez, B., Khanif, Y., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture, 3(2), 374–391. https://doi.org/10.9734/AJEA/2013/2746
  • Han, B., Yang, Z., Xie, Y. J., Nie, L., Cui, J., & Shen, W. B. (2014). Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Molecular Plant, 7(2), 388–403. https://doi.org/10.1093/mp/sst122
  • Hao, X., Zeng, M., Wang, J., Zeng, Z., Dai, J., Xie, Z., Yang, Y., Tian, L., Chen, L., & Li, D. (2018). A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers in Plant Science, 9, 476. https://doi.org/10.3389/fpls.2018.00476
  • He, X. L., Fan, S. K., Zhu, J., Guan, M. Y., Liu, X. X., Zhang, Y. S., & Jin, C. W. (2017). Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant and Soil, 416(1-2), 453–462. https://doi.org/10.1007/s11104-017-3232-y
  • Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Sarkar, S., Ahmad, Z., Vemuri, H., Garai, S., Mondal, M., Bhatt, R., Kumar, P., Banerjee, P., Saha, S., Ialam, T., & Laing, A. (2021). Selenium biofortification: Roles, mechanisms, responses and prospects. Molecules, 26, 881. https://doi.org/10.3390/molecules26040881
  • Huang, G., Ding, C., Guo, F., Zhang, T., & Wang, X. (2018). The optimum Se application time for reducing Cd uptake by rice (Oryza sativa L.) and its mechanism. Plant and Soil, 431(1-2), 231–243. https://doi.org/10.1007/s11104-018-3768-5
  • Huang, Q., Xu, Y., Liu, Y., Qin, X., Huang, R., & Liang, X. (2018). Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Environmental Science and Pollution Research International, 25(31), 31175–31182. https://doi.org/10.1007/s11356-018-3068-x
  • Huang, Q. N., An, H., Yang, Y. J., Liang, Y., & Shao, G. S. (2017). Effects of Mn-Cd antagonistic interaction on Cd accumulation and major agronomic traits in rice genotypes by different Mn forms. Plant Growth Regulation, 82(2), 317–331. https://doi.org/10.1007/s10725-017-0261-8
  • Hussain, B., Li, J., Ma, Y., Tahir, N., & Ullah, A. (2020). Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment. PloS One, 15(12), e0243174. https://doi.org/10.1371/journal.pone.0243174
  • Hussain, B., Umer, M. J., Li, J., Ma, Y., Abbas, Y., Ashraf, M. N., Tahir, N., Ullah, A., Gogo, N., & Farooq, M. (2021). Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 286, 125557. https://doi.org/10.1016/j.jclepro.2020.125557
  • Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics: Integrated Biometal Science, 11(2), 255–277. https://doi.org/10.1039/c8mt00247a
  • Jiang, H. M., Yang, J. C., & Zhang, J. F. (2007). Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution (Barking, Essex: 1987), 147(3), 750–756. https://doi.org/10.1016/j.envpol.2006.09.006
  • Jin, C. W., Du, S. T., Shamsi, I. H., Luo, B. F., & Lin, X. Y. (2011). NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. Journal of Experimental Botany, 62(11), 3875–3884. https://doi.org/10.1093/jxb/err078
  • Jogawat, A., Yadav, B. Narayan., & O. P., Chhaya. (2021). Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiologia Plantarum, 173(1), 259–275. https://doi.org/10.1111/ppl.13370
  • Kabir, A. H., Das, U., Rahman, M. A., & Lee, K. W. (2021). Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. Physiologia Plantarum, 173(1), 352–368. https://doi.org/10.1111/ppl.13424
  • Kaur, H., & Hussain, S. J. (2020). Cadmium: Bioavailability in soils and phytotoxicity. In Mishra, K., Tandon, P.K., & Srivastava, S. (Eds.), Sustainable solutions for elemental deficiency and excess in crop plants (pp. 351–391). Springer. https://doi.org/10.1007/978-981-15-8636-1_14
  • Kaya, C., & Ashraf, M. (2019). The mechanism of hydrogen sulfide mitigation of iron deficiency-induced chlorosis in strawberry (Fragaria × ananassa) plants. Protoplasma, 256(2), 371–382. https://doi.org/10.1007/s00709-018-1298-x
  • Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiologia Plantarum, 168(2), 345–360. https://doi.org/10.1111/ppl.13012
  • Kaya, C., Okant, M., Ugurlar, F., Alyemeni, M. N., Ashraf, M., & Ahmad, P. (2019). Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225, 627–638. https://doi.org/10.1016/j.chemosphere.2019.03.026
  • Khan, S., Basit, A., Hafeez, M. B., Irshad, S., Bashir, S., Bashir, S., Maqbool, M. M., Saddiq, M. S., Hasnain, Z., Aljuaid, B. S., El-Shehawi, A. M., & Li, Y. (2021). Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. PLoS One, 16(7), e0254452. https://doi.org/10.1371/journal.pone.0254452
  • Khoudi, H. (2021). Significance of vacuolar proton pumps and metal/H+ antiporters in plant heavy metal tolerance. Physiologia Plantarum, 173(1), 384–393. https://doi.org/10.1111/ppl.13447
  • Kobayashi, T., Nakanishi Itai, R., & Nishizawa, N. K. (2014). Iron deficiency responses in rice roots. Rice (New York, N.Y.), 7(1), 27. https://doi.org/10.1186/s12284-014-0027-0
  • Kong, W. W., Zhang, L. P., Guo, K., Liu, Z. P., & Yang, Z. M. (2010). Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnology Journal, 8(1), 88–99. https://doi.org/10.1111/j.1467-7652.2009.00469.x
  • Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17–42. https://doi.org/10.1146/annurev-arplant-102720-125738
  • Lei, G. J., Sun, L., Sun, Y., Zhu, X. F., Li, G. X., & Zheng, S. J. (2020). Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. Journal of Integrative Plant Biology, 62(2), 218–227. https://doi.org/10.1111/jipb.12801
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380–394. https://doi.org/10.1080/15320383.2019.1592108
  • Li, J. T., Gurajala, H. K., Wu, L. H., van der Ent, A., Qiu, R. L., Baker, A. J., Tang, Y. T., Yang, X. E., & Shu, W. S. (2018). Hyperaccumulator plants from China: A synthesis of the current state of knowledge. Environmental Science & Technology, 52(21), 11980–11994. https://doi.org/10.1021/acs.est.8b01060
  • Li, J. Y., Fu, Y. L., Pike, S. M., Bao, J., Tian, W., Zhang, Y., Chen, C. Z., Zhang, Y., Li, H. M., Huang, J., Li, L. G., Schroeder, J. L., Gassmann, W., & Gong, J. M. (2010). The Arabidopsis nitrate transporter NRT1. 8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, 22(5), 1633–1646. https://doi.org/10.1105/tpc.110.075242
  • Li, L., Liu, X., Peijnenburg, W. J., Zhao, J., Chen, X., Yu, J., & Wu, H. (2012). Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and Environmental Safety, 75(1), 1–7. https://doi.org/10.1016/j.ecoenv.2011.09.007
  • Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, F. M., Wu, M., Li, Y. F., Gao, Y., Rinklebe, J., & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 156, 106749. https://doi.org/10.1016/j.envint.2021.106749
  • Lin, J., Zhu, Z. Q., Zhu, Y. A., Liu, H. L., Zhang, L. H., & Jiang, Z. N. (2018). Dissolution and solubility product of Cd-fluorapatite [Cd5 (PO4) 3F] at pH of 2–9 and 25–45 °C. Journal of Chemistry, 2018, 1–9. https://doi.org/10.1155/2018/3109047
  • Lin, L., Zhou, W. H., Dai, H. X., Cao, F. B., Zhang, G. P., & Wu, F. B. (2012). Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 235-236, 343–351. https://doi.org/10.1016/j.jhazmat.2012.08.012
  • Liu, X. X., Zhang, H. H., Zhu, Q. Y., Ye, J. Y., Zhu, Y. X., Jing, X. T., Du, W. X., Zhou, M., Lin, X. Y., Zheng, S. J., & Jin, C. W. (2022). Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nature Communications, 13(1), 561. https://doi.org/10.1038/s41467-022-28261-4
  • Lu, Q., Weng, Y., You, Y., Xu, Q., Li, H., Li, Y., Liu, H., & Du, S. T. (2020). Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil. Environmental Pollution (Barking, Essex: 1987), 257, 113497. https://doi.org/10.1016/j.envpol.2019.113497
  • Lucena, C., Porras, R., Romera, F. J., Alcántara, E., García, M. J., & Pérez-Vicente, R. (2018). Similarities and differences in the acquisition of Fe and P by dicot Plants. Agronomy, 8(8), 148. https://doi.org/10.3390/agronomy8080148
  • Luo, B. F., Du, S. T., Lu, K. X., Liu, W. J., Lin, X. Y., & Jin, C. W. (2012). Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. Journal of Experimental Botany, 63(8), 3127–3136. https://doi.org/10.1093/jxb/ers036
  • Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21–37. https://doi.org/10.1093/jxb/erq281
  • Ma, C., Ci, K., Zhu, J., Sun, Z., Liu, Z., Li, X., Zhu, Y., Tang, C., Wang, P., & Liu, Z. (2021). Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. The Science of the Total Environment, 759, 143501. https://doi.org/10.1016/j.scitotenv.2020.143501
  • Ma, S. J., Nan, Z. R., Hu, Y. H., Chen, S., Yang, X. Y., & Su, J. Q. (2022). Phosphorus supply level is more important than wheat variety in safe utilization of cadmium-contaminated calcareous soil. Journal of Hazardous Materials, 424(Pt A), 127224. https://doi.org/10.1016/j.jhazmat.2021.127224
  • Mao, Q. Q., Guan, M. Y., Lu, K. X., Du, S. T., Fan, S. K., Ye, Y. Q., Lin, X. Y., & Jin, C. W. (2014). Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiology, 166(2), 934–944. https://doi.org/10.1104/pp.114.243766
  • McInturf, S. A., Khan, M. A., Gokul, A., Castro-Guerrero, N. A., Höhner, R., Li, J., Marjault, H.-B., Fichman, Y., Kunz, H.-H., Goggin, F. L., Keyster, M., Nechushtai, R., Mittler, R., & Mendoza-Cózatl, D. G. (2022). Cadmium interference with iron sensing reveals transcriptional programs sensitive and insensitive to reactive oxygen species. Journal of Experimental Botany, 73(1), 324–338. https://doi.org/10.1093/jxb/erab393
  • Mendoza-Cózatl, D. G., Jobe, T. O., Hauser, F., & Schroeder, J. I. (2011). Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology, 14(5), 554–562. https://doi.org/10.1016/j.pbi.2011.07.004
  • Meng, X., Li, W., Shen, R., & Lan, P. (2022). Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. Journal of Hazardous Materials, 422, 126913. https://doi.org/10.1016/j.jhazmat.2021.126913
  • MHPRC. (2012). China National Food Safety Standard: Maximum Limit of Contaminants in Food (GB 2762-2012).
  • Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environmental Science and Pollution Research International, 22(12), 9136–9147. https://doi.org/10.1007/s11356-015-4073-y
  • Nam, H. I., Shahzad, Z., Dorone, Y., Clowez, S., Zhao, K., Bouain, N., Lay-Pruitt, K. S., Cho, H., Rhee, S. Y., & Rouached, H. (2021). Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nature Communications, 12(1), 7211. https://doi.org/10.1038/s41467-021-27548-2
  • Nedjimi, B. (2018). Heavy metal tolerance in two Algerian saltbushes: A review on plant responses to cadmium and role of calcium in its mitigation. Plant Nutrients and Abiotic Stress Tolerance., 205–220. https://doi.org/10.1007/978-981-10-9044-8_9
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 1–9. https://doi.org/10.1155/2019/5794869
  • Nogawa, K., Suwazono, Y., Nishijo, M., Sakurai, M., Ishizaki, M., Morikawa, Y., Watanabe, Y., Kido, T., & Nakagawa, H. (2018). Increase of lifetime cadmium intake dose-dependently increased all cause of mortality in female inhabitants of the cadmium-polluted Jinzu River basin, Toyama, Japan. Environmental Research, 164, 379–384. https://doi.org/10.1016/j.envres.2018.03.019
  • Noriega, G., Cruz, D. S., Batlle, A., Tomaro, M., & Balestrasse, K. (2012). Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots. Journal of Plant Growth Regulation, 31(1), 79–89. https://doi.org/10.1007/s00344-011-9221-0
  • Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14, 1504. https://doi.org/10.3390/ijerph14121504
  • Pan, W., Lu, Q., Xu, Q. R., Zhang, R. R., Li, H. Y., Yang, Y. H., Liu, H. J., & Du, S. T. (2019). Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil. Ecotoxicology and Environmental Safety, 177, 100–107. https://doi.org/10.1016/j.ecoenv.2019.04.010
  • Pan, W., You, Y., Shentu, J. L., Weng, Y. N., Wang, S. T., Xu, Q. R., Liu, H. J., & Du, S. T. (2020). Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of Hazardous Materials, 391, 122189. https://doi.org/10.1016/j.jhazmat.2020.122189
  • Pathak, J., Ahmed, H., Kumari, N., Pandey, A., & Sinha, R. P. (2020). Protective chemical agents in the amelioration of plant abiotic stress: Biochemical and molecular perspectives. Role of calcium and potassium in amelioration of environmental stress in plants. John Wiley & Sons Ltd.https://doi.org/10.1002/9781119552154.ch27
  • Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A., & Nikolic, M. (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, 697592. https://doi.org/10.3389/fpls.2021.697592
  • Pottier, M., Oomen, R., Picco, C., Giraudat, J., ScholzatFromO, J., Richaud, P., Carpaneto, A., & Thomine, S. (2015). Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. The Plant Journal: For Cell and Molecular Biology, 83(4), 625–637. https://doi.org/10.1111/tpj.12914
  • Qaswar, M., Chai, R., Ahmed, W., Jing, H., Han, T., Liu, K., Ye, X., Xu, Y., Anthonio, C. K., & Zhang, H. (2020). Partial substitution of chemical fertilizers with organic amendments increased rice yield by changing phosphorus fractions and improving phosphatase activities in fluvo-aquic soil. Journal of Soils and Sediments, 20(3), 1285–1296. https://doi.org/10.1007/s11368-019-02476-3
  • Qin, S. Y., Liu, H., Nie, Z. J., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168–180. https://doi.org/10.1016/S1002-0160(20)60002-9
  • Qiu, Q., Wang, Y., Yang, Z., & Yuan, J. (2011). Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49(9), 2260–2267. https://doi.org/10.1016/j.fct.2011.06.024
  • Queiroz, H. M., Ferreira, T. O., Barcellos, D., Nóbrega, G. N., Antelo, J., Otero, X. L., & Bernardino, A. F. (2021). From sinks to sources: The role of Fe oxyhydroxide transformations on phosphorus dynamics in estuarine soils. Journal of Environmental Management, 278(Pt 2), 111575. https://doi.org/10.1016/j.jenvman.2020.111575
  • Riaz, M., Kamran, M., Rizwan, M., Ali, S., Parveen, A., Malik, Z., & Wang, X. R. (2021). Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere, 273, 129690. https://doi.org/10.1016/j.chemosphere.2021.129690
  • Rehman, M. Z. U., Rizwan, M., Ali, S., Naeem, A., Yousaf, B., Lui, G., Khalid, H., Hafeez, F. Azhar., & M., Saifullah. (2018). A field study investigating the potential use of phosphorus combined with organic amendments on cadmium accumulation by wheat and subsequent rice. Arabian Journal of Geosciences, 11(19), 1–9. https://doi.org/10.1007/s12517-018-3961-0
  • Rizwan, M., Ali, S., Rehman, M. Z. U., & Maqbool, A. (2019). A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research International, 26(7), 6279–6289. https://doi.org/10.1007/s11356-019-04174-6
  • Rochayati, S., Verloo, M., & Laing, G. D. (2010). Availability of cadmium and zinc as affected by the use of reactive phosphate rock, lime, and chicken manure on an Indonesian acidic upland soil under field conditions. Communications in Soil Science and Plant Analysis, 41(16), 1986–2003. https://doi.org/10.1080/00103624.2010.495808
  • Ruangcharus, C., Kim, S. U., & Hong, C. O. (2020). Mechanism of cadmium immobilization in phosphate-amended arable soils. Applied Biological Chemistry, 63(1), 7. https://doi.org/10.1186/s13765-020-00522-0
  • Santos, E. F., Pongrac, P., Reis, A. R., White, P. J., & Lavres, J. (2019). Phosphorus–zinc interactions in cotton: Consequences for biomass production and nutrient-use efficiency in photosynthesis. Physiologia Plantarum, 166(4), 996–1007. https://doi.org/10.1111/ppl.12867
  • Scavo, A. (2019). Mutant mapping of Arabidopsis lines displaying enhanced responses to cadmium, and monitoring heavy metals and metalloids in crops produced from campus community gardens (Order No. 13858547). Available from ProQuest Dissertations & Theses Global. (2268993917).
  • Seshadri, B., Bolan, N. S., Wijesekara, H., Kunhikrishnan, A., Thangarajan, R., Qi, F., Matheyarasu, R., Rocco, C., Mbene, K., & Naidu, R. (2016). Phosphorus–cadmium interactions in paddy soils. Geoderma, 270, 43–59. https://doi.org/10.1016/j.geoderma.2015.11.029
  • Sharma, P., Ngo, H. H., Khanal, S., Larroche, C., Kim, S. H., & Pandey, A. (2021). Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. Environmental Technology & Innovation, 23, 101725. https://doi.org/10.1016/j.eti.2021.101725
  • Sharma, V., Kumar, R. R., Pandey, R., & Singh, B. (2018). Regulation of phytosiderophore (PS) and Yellow Stripe-1 (YS1) transporter activity by sulphur (S) and that of high-affinity sulphate (SULTR1; 1) transporter by iron (Fe) in wheat. International Journal of Current Microbiology and Applied Sciences, 7(1), 71–88. https://doi.org/10.20546/ijcmas.2018.701.010
  • Shen, B. B., Wang, X. M., Zhang, Y., Zhang, M., Wang, K., Xie, P., & Ji, H. B. (2020). The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. The Science of the Total Environment, 711, 135229. https://doi.org/10.1016/j.scitotenv.2019.135229
  • Siddique, A. B., Rahman, M. M., Islam, M. R., & Naidu, R. (2021). Varietal variation and formation of iron plaques on cadmium accumulation in rice seedling. Environmental Advances, 5, 100075. https://doi.org/10.1016/j.envadv.2021.100075
  • Sidhu, G. P. S., Bali, A. S., & Bhardwaj, R. (2019). Cadmium tolerance in plants: Role of organic acids in mitigating cadmium toxicity in plants. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815794-7.00010-2
  • Tan, L., Qu, M., Zhu, Y., Peng, C., Wang, J., Gao, D., & Chen, C. (2020). ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 183(3), 1235–1249. https://doi.org/10.1104/pp.19.01569
  • Tang, L., Dong, J., Tan, L., Ji, Z., Li, Y., Sun, Y., Chen, C., Lv, Q., Mao, B., Hu, Y., & Zhao, B. (2021). Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice. Rice, 14(1), 1–15. https://doi.org/10.1186/s12284-021-00530-8
  • Tang, R. J., Wang, C., Li, K., & Luan, S. (2020). The CBL–CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends in Plant Science, 25(6), 604–617. https://doi.org/10.1016/j.tplants.2020.01.009
  • Treesubsuntorn, C., & Thiravetyan, P. (2019). Calcium acetateine/www.ncbi.nlm.nih.gov/pubmed/32407699" \o "Oryza sativa: Expression of auto-inhibited calcium-ATPase and cadmium transporters. Plant Biology (Stuttgart, Germany), 21(5), 862–872. https://doi.org/10.1111/plb.12990
  • Wang, B., & Du, Y. L. (2013). Cadmium and its neurotoxic effects. Oxidative Medicine and Cellular Longevity, 2013, 898034. https://doi.org/10.1155/2013/898034
  • Wang, H., Xu, C., Luo, Z. C., Zhu, H. H., Wang, S., Zhu, Q. H., Huang, D. Y., Zhang, Y. Z., Xiong, J., & He, Y. B. (2018). Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions. Environmental Science and Pollution Research International, 25(29), 29287–29294. https://doi.org/10.1007/s11356-018-2938-6
  • Wang, M., Wang, L., Zhao, S., Li, S., Lei, X., Qin, L., Sun, X., & Chen, S. (2021). Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe + pH. Journal of Hazardous Materials, 416, 126079. https://doi.org/10.1111/pce.13843
  • Wang, T., Hua, Y., Chen, M., Zhang, J., Guan, C., & Zhang, Z. (2018). Mechanism enhancing Arabidopsis resistance to cadmium: The role of NRT1. 5 and proton pump. Frontiers in Plant Science, 9, 1892. https://doi.org/10.3389/fpls.2018.01892
  • Wang, Y., Li, Z., Wu, J., Liu, H., Sun, X., Liu, L., & Du, S. T. (2022). Abscisic acid-catabolizing bacteria: A useful tool for enhancing phytoremediation. The Science of the Total Environment, 812, 151474. https://doi.org/10.1016/j.scitotenv.2021
  • Ward, J. T., Lahner, B., Yakubova, E., Salt, D. E., & Raghothama, K. G. (2008). The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology, 147(3), 1181–1191. https://doi.org/10.1104/pp.108.118562
  • Wei, W., Peng, H., Xie, Y., Wang, X., Huang, R., Chen, H., & Ji, X. (2021). The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. Ecotoxicology and Environmental Safety, 226, 112810. https://doi.org/10.1016/j.ecoenv.2021.112810
  • Weng, L., Vega, F. A., & Van Riemsdijk, W. H. (2011). Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environmental Science & Technology, 45(19), 8420–8428. https://doi.org/10.1021/es201844d
  • Xu, Q., Pan, W., Zhang, R., Lu, Q., Xue, W., Wu, C., Song, B., & Du, S. T. (2018). Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces IRT1-mediated cadmium uptake of roots. Journal of Agricultural and Food Chemistry, 66(20), 5229–5236. https://doi.org/10.1021/acs.jafc.8b00598
  • Yang, C., Qiu, W. W., Chen, Z. X., Chen, W. Q., Li, Y. F., Zhu, J. L., Rahman, S. U., Han, Z. X., Jiang, Y., Yang, G. J., Tian, J., Ma, Q., & Zhang, Y. (2020). Phosphorus influence Cd phytoextraction in Populus stems via modulating xylem development, cell wall Cd storage and antioxidant defense. Chemosphere, 242, 125154. https://doi.org/10.1016/j.chemosphere.2019.125154
  • Yang, P., Chen, H. J., Fan, H. Y., Li, Q. S., Gao, Q., Wang, D. S., Wang, L. L., Zhou, C., & Zeng, E. Y. (2019). Phosphorus supply alters the root metabolism of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsenet Lee) and the mobilization of Cd bound to lepidocrocite in soil. Environmental and Experimental Botany, 167, 103827. https://doi.org/10.1016/j.envexpbot.2019.103827
  • Yang, Y. J., Xiong, J., Chen, R. J., Fu, G. F., Chen, T. T., & Tao, L. X. (2016). Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environmental and Experimental Botany, 122, 141–149. https://doi.org/10.1016/j.envexpbot.2015.10.001
  • Yang, Y. J., Xiong, J., Tao, L. X., Cao, Z. Z., Tang, W., Zhang, J. P., Yu, X. Y., Fu, G. F., Zhang, X. F., & Lu, Y. L. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: A review. The Science of the Total Environment, 708, 135186. https://doi.org/10.1016/j.scitotenv.2019.135186
  • Yao, X., Cai, Y., Yu, D., & Liang, G. (2018). bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60(8), 691–702. https://doi.org/10.1111/jipb.12658
  • Ye, P., Wang, M., Zhang, T., Liu, X., Jiang, H., Sun, Y., Cheng, X., & Yan, Q. (2020). Enhanced cadmium accumulation and tolerance in transgenic hairy roots of Solanum nigrum L. expressing Iron-Regulated Transporter gene IRT1. Life, 10, 324. https://doi.org/10.3390/life10120324
  • Ye, Y. Q., Jin, C. W., Fan, S. K., Mao, Q. Q., Sun, C. L., Yu, Y., & Lin, X. Y. (2015). Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Scientific Reports, 5, 10746. https://doi.org/10.1038/srep10746
  • Yoneyama, T. (2021). Iron delivery to the growing leaves associated with leaf chlorosis in mugineic acid family phytosiderophores-generating graminaceous crops. Soil Science and Plant Nutrition, 67(4), 415–426. https://doi.org/10.1080/00380768.2021.1947735
  • You, Y., Liu, L., Wang, Y., Li, J., Ying, Z., Hou, Z., Liu, H., & Du, S. T. (2021). Graphene oxide decreases Cd concentration in rice seedlings but intensifies growth restriction. Journal of Hazardous Materials, 417, 125958. https://doi.org/10.1016/j.jhazmat.2021.125958
  • You, Y., Wang, Y., Zhang, S., Sun, X., Liu, H., Guo, E. Y., & Du, S. T. (2022). Different pathways for exogenous ABA-mediated down-regulation of cadmium accumulation in plants under different iron supplies. Journal of Hazardous Materials, 440, 129769. https://doi.org/10.1016/j.jhazmat.2022.129769
  • Zeng, P., Liu, J., Zhou, H., Wei, B., Gu, J., Liao, Y., Liao, B., & Luo, X. F. (2023). Co-application of combined amendment (limestone and sepiolite) and Si fertilizer reduces rice Cd uptake and transport through Cd immobilization and Si–Cd antagonism. Chemosphere, 316, 137859. https://doi.org/10.1016/j.chemosphere.2023.137859
  • Zhai, Z., Gayomba, S. R., Jung, H. I., Vimalakumari, N. K., Piñeros, M., Craft, E., Rutzke, M. A., Danku, J., Lahner, B., Punshon, T., Guerinot, M. L., Salt, D. E., Kochian, L. V., & Vatamaniuk, O. K. (2014). OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell, 26(5), 2249–2264. https://doi.org/10.1105/tpc.114.123737
  • Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C., & Lin, Y. (2022). Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells, 11, 569. https://doi.org/10.3390/cells11030569
  • Zhang, L., Gao, C., Chen, C., Zhang, W., Huang, X. Y., & Zhao, F. J. (2020). Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. Environmental Science & Technology, 54(16), 10100–10108. https://doi.org/10.1021/acs.est.0c02877
  • Zhang, Q., Wen, Q., Ma, T., Zhu, Q., Huang, D., Zhu, H., Xu, C., & Chen, H. (2023). Cadmium-induced iron deficiency is a compromise strategy to reduce Cd uptake in rice. Environmental and Experimental Botany, 206, 105155. https://doi.org/10.1016/j.envexpbot.2022.105155
  • Zhang, R. R., Liu, Y., Xue, W. L., Chen, R. X., Du, S. T., & Jin, C. W. (2016). Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Environmental Science and Pollution Research International, 23(24), 25074–25083. https://doi.org/10.1007/s11356-016-7742-6
  • Zhang, S., Li, Q., Nazir, M. M., Ali, S., Ouyang, Y., Ye, S. Z., & Zeng, F. R. (2020). Calcium plays a double-edged role in modulating cadmium uptake and translocation in rice. International Journal of Molecular Sciences, 21, 8058. https://doi.org/10.3390/ijms21218058
  • Zhang, X., Rui, H., Zhang, F., Hu, Z., Xia, Y., & Shen, Z. (2018). Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Frontiers in Plant Science, 9, 107. https://doi.org/10.3389/fpls.2018.00107
  • Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 20, 2424. https://doi.org/10.3390/ijms20102424
  • Zhang, Y., Wang, X., Ji, X., Liu, Y., Lin, Z., Lin, Z., Xiao, S., Peng, B., Tan, C., & Zhang, X. (2019). Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system. Journal of Environmental Management, 233, 802–811. https://doi.org/10.1016/j.jenvman.2018.10.006
  • Zhang, Z. H., Zhou, T., Tang, T. J., Song, H. X., Guan, C. Y., Huang, J. Y., & Hua, Y. P. (2019). A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Journal of Experimental Botany, 70(19), 5437–5455. https://doi.org/10.1093/jxb/erz295
  • Zhang, Z., & Chu, C. (2020). Nitrogen-use divergence between indica and japonica rice: Variation at nitrate assimilation. Molecular Plant, 13(1), 6–7. https://doi.org/10.1016/j.molp.2019.11.011
  • Zhao, Z. Q., Zhu, Y. G., Smith, F. A., & Smith, S. E. (2005). Cadmium uptake by winter wheat seedlings in response to interactions between phosphorus and zinc supply in soils. Journal of Plant Nutrition, 28(9), 1569–1580. https://doi.org/10.1080/01904160500203457
  • Zhen, S., Shuai, H., Xu, C., Lv, G., Zhu, X., Zhang, Q., Zhu, Q., Núñez-Delgado, A., Conde-Cid, M., Zhou, Y., & Huang, D. (2021). Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. The Science of the Total Environment, 770, 145302. https://doi.org/10.1016/j.scitotenv.2021.145302
  • Zhong, M. S., Jiang, L., Han, D., Xia, T. X., Yao, J. J., Jia, X. Y., & Peng, C. (2015). Cadmium exposure via diet and its implication on the derivation of health-based soil screening values in China. Journal of Exposure Science & Environmental Epidemiology, 25(4), 433–442. https://doi.org/10.1038/jes.2015.5
  • Zhou, C., Ge, N., Guo, J., Zhu, L., Ma, Z., Cheng, S., & Wang, J. (2019). Enterobacter asburiae reduces cadmium toxicity in maize plants by repressing iron uptake-associated pathways. Journal of Agricultural and Food Chemistry, 67(36), 10126–10136. https://doi.org/10.1021/acs.jafc.9b03293
  • Zhou, M., Zhang, L. L., Ye, J. Y., Zhu, Q. Y., Du, W. X., Zhu, Y. X., Liu, X. X., Lin, X. Y., & Jin, C. W. (2021). Knockout of FER decreases cadmium concentration in roots of Arabidopsis thaliana by inhibiting the pathway related to iron uptake. The Science of the Total Environment, 798, 149285. https://doi.org/10.1016/j.scitotenv.2021.149285
  • Zhu, X. F., Wang, Z. W., Dong, F., Lei, G. J., Shi, Y. Z., Li, G. X., & Zheng, S. J. (2013). Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. Journal of Hazardous Materials, 263, 398–403. https://doi.org/10.1016/j.jhazmat.2013.09.018
  • Zhu, X. F., Wang, Z. W., Wan, J. X., Sun, Y., Wu, Y. R., Li, G. X., Shen, R. F., & Zheng, S. J. (2015). Pectin enhances rice (Oryza sativa) root phosphorus remobilization. Journal of Experimental Botany, 66(3), 1017–1024. https://doi.org/10.1093/jxb/eru461
  • Zhu, Y. G., Zhao, Z. Q., Li, H. Y., Smith, S. E., & Smith, F. A. (2003). Effect of zinc–cadmium interactions on the uptake of zinc and cadmium by winter wheat (Triticum aestivum) grown in pot culture. Bulletin of Environmental Contamination and Toxicology, 71(6), 1289–1296. https://doi.org/10.1007/s00128-003-0230-y
  • Zhu, Y. X., Dai, Y. J., Jing, X. T., Liu, X. X., & Jin, C. W. (2022). Inhibition of BRUTUS enhances plant tolerance to Zn toxicity by upregulating pathways related to iron nutrition. Life, 12, 216. https://doi.org/10.3390/life12020216
  • Zhu, Y. X., Du, W. X., Fang, X. Z., Zhang, L. L., & Jin, C. W. (2020). Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants. Journal of Hazardous Materials, 384, 121473. https://doi.org/10.1016/j.jhazmat.2019.121473

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.