917
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A review of the application of iron oxides for phosphorus removal and recovery from wastewater

, , , , , ORCID Icon & show all
Pages 405-423 | Published online: 07 Aug 2023

References

  • Afridi, M. N., Lee, W. H., & Kim, J. O. (2019). Effect of phosphate concentration, anions, heavy metals, and organic matter on phosphate adsorption from wastewater using anodized iron oxide nanoflakes. Environmental Research, 171, 428–436. https://doi.org/10.1016/j.envres.2019.01.055
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  • Ahmed, S., & Lo, I. M. C. (2020). Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La(OH)3 nanocomposite. Chemosphere, 261, 128118. https://doi.org/10.1016/j.chemosphere.2020.128118
  • Ahmed, S., Zhang, Y., Wu, B., Zheng, Z., Leung, C. F., Choy, T. Y., Kwok, Y. T., & Lo, I. M. C. (2021). Scaled-up development of magnetically recyclable Fe3O4/La(OH)3 composite for river water phosphate removal: From bench-scale to pilot-scale study. Science of the Total Environment, 791, 148281. https://doi.org/10.1016/j.scitotenv.2021.148281
  • Ai, D., Ma, H., Meng, Y., Wei, T., & Wang, B. (2023). Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar. Science of the Total Environment, 860, 160502. https://doi.org/10.1016/j.scitotenv.2022.160502
  • Almeida, P. V., Santos, A. F., Lopes, D. V., Gando-Ferreira, L. M., & Quina, M. J. (2020). Novel adsorbents based on eggshell functionalized with iron oxyhydroxide for phosphorus removal from liquid effluents. Journal of Water Process Engineering, 36, 101248. https://doi.org/10.1016/j.jwpe.2020.101248
  • Altaf, R., Lin, X., Zhuang, W-q., Lu, H., Rout, P. R., & Liu, D. (2021). Nitrilotrismethylenephosphonate sorption from wastewater on zirconium-lanthanum modified magnetite: Reusability and mechanism study. Journal of Cleaner Production, 314, 128045. https://doi.org/10.1016/j.jclepro.2021.128045
  • Amini, M., Antelo, J., Fiol, S., & Rahnemaie, R. (2020). Modeling the effects of humic acid and anoxic condition on phosphate adsorption onto goethite. Chemosphere, 253, 126691. https://doi.org/10.1016/j.chemosphere.2020.126691
  • Axinte, O., Badescu, I. S., Stroe, C., Neacsu, V., Bulgariu, L., & Bulgariu, D. (2015). Evolution of trophic parameters from Amara Lake. Environmental Engineering and Management Journal, 14(3), 559–565. https://doi.org/10.30638/eemj.2015.060
  • Bădescu, I. S., Bulgariu, D., Ahmad, I., & Bulgariu, L. (2018). Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. Journal of Environmental Management, 224, 288–297. https://doi.org/10.1016/j.jenvman.2018.07.066
  • Baillie, J., & Zhang, Y. P. (2018). Space for nature. Science, 361(6407), 1051. https://doi.org/10.1126/science.aau1397
  • Bakshi, S., Laird, D. A., Smith, R. G., & Brown, R. C. (2021). Capture and release of orthophosphate by Fe-modified biochars: Mechanisms and environmental applications. ACS Sustainable Chemistry & Engineering, 9(2), 658–668. https://doi.org/10.1021/acssuschemeng.0c06108
  • Bian, H., Wang, M., Han, J., Hu, X., Xia, H., Wang, L., Fang, C., Shen, C., Man, Y. B., Wong, M. H., Shan, S., & Zhang, J. (2023). MgFe-LDH@biochars for removing ammonia nitrogen and phosphorus from biogas slurry: Synthesis routes, composite performance, and adsorption mechanisms. Chemosphere, 324, 138333. https://doi.org/10.1016/j.chemosphere.2023.138333
  • Bindraban, P. S., Dimkpa, C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), 299–317. https://doi.org/10.1007/s00374-019-01430-2
  • Bjerrum, C. J., & Canfield, D. E. (2002). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature, 417(6885), 159–162. https://doi.org/10.1038/417159a
  • Cao, D., Jin, X., Gan, L., Wang, T., & Chen, Z. (2016). Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere, 159, 23–31. https://doi.org/10.1016/j.chemosphere.2016.05.080
  • Chen, S., Xu, Y., Tang, Y., Chen, W., Chen, S., Hu, L., & Boulon, G. (2020). Pretreatment by recyclable Fe3O4@Mg/Al-CO3-LDH magnetic nano-adsorbent to dephosphorize for the determination of trace F- and Cl- in phosphorus-rich solutions. RSC Advances, 10(72), 44361–44372. https://doi.org/10.1039/d0ra07761e
  • Chen, X., Li, Z., He, N., Zheng, Y., Li, H., Wang, H., Wang, Y., Lu, Y., Li, Q., & Peng, Y. (2018). Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnology for Biofuels, 11(1), 190. https://doi.org/10.1186/s13068-018-1190-0
  • Colombo, C., Barrón, V., & Torrent, J. (1994). Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochimica et Cosmochimica Acta, 58(4), 1261–1269. https://doi.org/10.1016/0016-7037(94)90380-8
  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens G. E. (2009). Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
  • Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Cui, Q., Xu, J., Wang, W., Tan, L., Cui, Y., Wang, T., Li, G., She, D., & Zheng, J. (2020). Phosphorus recovery by core-shell gamma-Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Science of the Total Environment, 729, 138892. https://doi.org/10.1016/j.scitotenv.2020.138892
  • Cuong, Q., Ko, S. O., Jang, A., Kim, Y., & Kang, S. (2020). Incorporation of iron (oxyhydr)oxide nanoparticles with expanded graphite for phosphorus removal and recovery from aqueous solutions. Chemosphere, 259, 127395. https://doi.org/10.1016/j.chemosphere.2020.127395
  • Deng, Y., Weng, L., Li, Y., Ma, J., & Chen, Y. (2019). Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface. Water Research, 157, 372–380. https://doi.org/10.1016/j.watres.2019.03.077
  • Di Capua, F., de Sario, S., Ferraro, A., Petrella, A., Race, M., Pirozzi, F., Fratino, U., & Spasiano, D. (2022). Phosphorous removal and recovery from urban wastewater: Current practices and new directions. Science of the Total Environment, 823, 153750. https://doi.org/10.1016/j.scitotenv.2022.153750
  • Elzinga, E. J., & Sparks, D. L. (2007). Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. Journal of Colloid and Interface Science, 308(1), 53–70. https://doi.org/10.1016/j.jcis.2006.12.061
  • Fang, H., Cui, Z., He, G., Huang, L., & Chen, M. (2017a). Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Science of the Total Environment, 605-606, 357–367. https://doi.org/10.1016/j.scitotenv.2017.05.133
  • Fang, L., Liu, R., Li, J., Xu, C., Huang, L.-Z., & Wang, D. (2018). Magnetite/Lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles. Water Research, 130, 243–254. https://doi.org/10.1016/j.watres.2017.12.008
  • Fang, L., Wu, B., & Lo, I. M. C. (2017b). Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism. Chemical Engineering Journal, 319, 258–267. https://doi.org/10.1016/j.cej.2017.03.012
  • Gamshadzehi, E., Nassiri, M., & Ershadifar, H. (2019). One-pot synthesis of microporous Fe2O3/g-C3N4 and its application for efficient removal of phosphate from sewage and polluted seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 7–15. https://doi.org/10.1016/j.colsurfa.2019.01.029
  • Gilbert, N. (2009). Environment: The disappearing nutrient. Nature, 461(7265), 716–718. https://doi.org/10.1038/461716a
  • Grybos, M., Davranche, M., Gruau, G., Petitjean, P., & Pédrot, M. (2009). Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma, 154(1-2), 13–19. https://doi.org/10.1016/j.geoderma.2009.09.001
  • Guan, T., Kuang, Y., Li, X., Fang, J., Fang, W., & Wu, D. (2020). The recovery of phosphorus from source-separated urine by repeatedly usable magnetic Fe3O4@ZrO2 nanoparticles under acidic conditions. Environment International, 134, 105322. https://doi.org/10.1016/j.envint.2019.105322
  • Gulyas, A., Genc, S., Can, Z. S., & Semerci, N. (2021). Phosphate recovery from sewage sludge supernatants using magnetic nanoparticles. Journal of Water Process Engineering, 40, 101843. https://doi.org/10.1016/j.jwpe.2020.101843
  • Han, C., Lalley, J., Iyanna, N., & Nadagouda, M. N. (2017). Removal of phosphate using calcium and magnesium-modified iron-based adsorbents. Materials Chemistry and Physics, 198, 115–124. https://doi.org/10.1016/j.matchemphys.2017.05.038
  • Hao, H., Wang, Y., & Shi, B. (2019). NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study. Water Research, 155, 1–11. https://doi.org/10.1016/j.watres.2019.01.049
  • He, J. J., Pei, C. H., Yang, Y., Lai, B., Sun, Y., & Yang, L. W. (2021). The structural design and valence state control of cerium-based metal-organic frameworks for their highly efficient phosphate removal. Journal of Cleaner Production, 321, 128778. https://doi.org/10.1016/j.jclepro.2021.128778
  • Hsu, L.-C., Tzou, Y.-M., Ho, M.-S., Sivakumar, C., Cho, Y.-L., Li, W.-H., Chiang, P.-N., Teah, H. Y., & Liu, Y.-T. (2020). Preferential phosphate sorption and Al substitution on goethite. Environmental Science: Nano, 7(11), 3497–3508. https://doi.org/10.1039/C9EN01435G
  • Huang, J., Jones, A., Waite, T. D., Chen, Y., Huang, X., Rosso, K. M., Kappler, A., Mansor, M., Tratnyek, P. G., & Zhang, H. (2021). Fe(II) Redox Chemistry in the Environment. Chemical Reviews, 121(13), 8161–8233. https://doi.org/10.1021/acs.chemrev.0c01286
  • Huang, X. (2004). Intersection of isotherms for phosphate adsorption on hematite. Journal of Colloid and Interface Science, 271(2), 296–307. https://doi.org/10.1016/j.jcis.2003.12.007
  • Ji, L., Ren, G., Xu, D., Fan, B., Zhang, Z., Yuan, T., Yan, Z., & Wang, X. (2022). Selective adsorption of various phosphorus species coexistence in water-soluble ammonium polyphosphate on goethite: Experimental investigation and molecular dynamics simulation. Chemosphere, 307, 135901. https://doi.org/10.1016/j.chemosphere.2022.135901
  • Jiang, D., Amano, Y., & Machida, M. (2017). Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent. Journal of Environmental Chemical Engineering, 5(5), 4229–4238. https://doi.org/10.1016/j.jece.2017.08.007
  • Jung, Y., Ko, Y. G., Do, T., Chun, Y., Choi, U. S., & Kim, C. H. (2019). Core/shell hybrid fiber with aminated PAN and Fe2O3 as a high-capacity adsorbent for phosphate ions. Journal of Hazardous Materials, 378, 120726. https://doi.org/10.1016/j.jhazmat.2019.06.003
  • Kamran, M. A., Bibi, S., Chen, B., Jiang, J., & Xu, R. K. (2022). Elucidating the mechanisms determining the availability of phosphate by application of biochars from different parent materials. Environmental Geochemistry and Health, 44(11), 4191–4200. https://doi.org/10.1007/s10653-021-01184-7
  • Khanna, R., Konyukhov, Y. V., Ikram-Ul-Haq, M., Burmistrov, I., Cayumil, R., Belov, V. A., Rogachev, S. O., Leybo, D. V., & Mukherjee, P. S. (2021). An innovative route for valorising iron and aluminium oxide rich industrial wastes: Recovery of multiple metals. Journal of Environmental Management, 295, 113035. https://doi.org/10.1016/j.jenvman.2021.113035
  • Kim, J., Deng, Q. R., & Benjamin, M. M. (2008). Simultaneous removal of phosphorus and foulants in a hybrid coagulation/membrane filtration system. Water Research, 42(8-9), 2017–2024. https://doi.org/10.1016/j.watres.2007.12.017
  • Kim, J. H., Kim, S. B., Lee, S. H., & Choi, J. W. (2018). Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water. Environmental Technology, 39(6), 770–779. https://doi.org/10.1080/09593330.2017.1310937
  • Knoerr, R., Brendlé, J., Lebeau, B., & Demais, H. (2013). Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution. Microporous and Mesoporous Materials, 169, 185–191. https://doi.org/10.1016/j.micromeso.2012.09.036
  • Kong, X., Bai, R., Wang, S., Wu, B., Zhang, R., & Li, H. (2022). Recovery of phosphorus from aqueous solution by magnetic TiO2*/Fe3O4 composites. Chemical Physics Letters, 787, 139234. https://doi.org/10.1016/j.cplett.2021.139234
  • Konhauser, K. O., Lalonde, S. V., Amskold, L., & Holland, H. D. (2007). Was there really an Archean phosphate crisis? Science, 315(5816), 1234. https://doi.org/10.1126/science.1136328
  • Kpannieu, D. E., Mallet, M., Coulibaly, L., Abdelmoula, M., & Ruby, C. (2019). Phosphate removal from water by naturally occurring shale, sandstone, and laterite: The role of iron oxides and of soluble species. Comptes Rendus Geoscience, 351(1), 37–47. https://doi.org/10.1016/j.crte.2018.09.004
  • Li, R., Zhang, Y., Deng, H., Zhang, Z., Wang, J. J., Shaheen, S. M., Xiao, R., Rinklebe, J., Xi, B., He, X., & Du, J. (2020). Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. Journal of Hazardous Materials, 384, 121095. https://doi.org/10.1016/j.jhazmat.2019.121095
  • Li, S., Zhang, Y., Qiao, S., & Zhou, J. (2022). MgO coated magnetic Fe3O4@SiO2 nanoparticles with fast and efficient phosphorus removal performance and excellent pH stability. Chemosphere, 307, 135972. https://doi.org/10.1016/j.chemosphere.2022.135972
  • Li, W., Wang, L., Liu, F., Liang, X., Feng, X., Tan, W., Zheng, L., & Yin, H. (2016a). Effects of Al3+ doping on the structure and properties of goethite and its adsorption behavior towards phosphate. Journal of Environmental Sciences (China), 45, 18–27. https://doi.org/10.1016/j.jes.2015.12.013
  • Li, X., Ai, L., & Jiang, J. (2016b). Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance. Chemical Engineering Journal, 288, 789–797. https://doi.org/10.1016/j.cej.2015.12.022
  • Lidicker, W. Z.Jr (2020). A Scientist’s Warning to humanity on human population growth. Global Ecology and Conservation, 24, e01232. https://doi.org/10.1016/j.gecco.2020.e01232
  • Lin, X., Lan, L., Altaf, R., Han, Z., Ye, Z., Zhu, S., & Liu, D. (2020). Simultaneous P release and recovery from fish farm sludge using a Zr-modified magnetic adsorbent treated by ultrasound. Journal of Cleaner Production, 250, 119529. https://doi.org/10.1016/j.jclepro.2019.119529
  • Lin, X., Xie, Y., Lu, H., Xin, Y., Altaf, R., Zhu, S., & Liu, D. (2021). Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery. Chemical Engineering Journal, 413, 127530. https://doi.org/10.1016/j.cej.2020.127530
  • Liu, B. H., Dai, S. Y., Zhang, X. T., Cui, F. Y., Nan, J., & Wang, W. (2022a). Highly efficient and reusable lanthanum-carbon nanotube films for enhanced phosphate removal. Separation and Purification Technology, 299, 121710. https://doi.org/10.1016/j.seppur.2022.121710
  • Liu, J. W., Jiang, J. G., Aihemaiti, A., Meng, Y., Yang, M., Xu, Y. W., Gao, Y. C., Zou, Q., & Chen, X. J. (2019). Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue. Journal of Environmental Management, 250, 109438. https://doi.org/10.1016/j.jenvman.2019.109438
  • Liu, X., Cheng, W., Yu, Y., Jiang, S., Xu, Y., & Zong, E. (2022b). Magnetic ZrO2/PEI/Fe3O4 functionalized MWCNTs composite with enhanced phosphate removal performance and easy separability. Composites Part B: Engineering, 237, 109861. https://doi.org/10.1016/j.compositesb.2022.109861
  • Liu, X., Han, Y., He, F., Gao, P., & Yuan, S. (2021). Characteristic, hazard and iron recovery technology of red mud - A critical review. Journal of Hazardous Materials, 420, 126542. https://doi.org/10.1016/j.jhazmat.2021.126542
  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847–907. https://doi.org/10.1080/10643389.2012.741311
  • Marcińczyk, M., Ok, Y. S., & Oleszczuk, P. (2022). From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere, 306, 135310. https://doi.org/10.1016/j.chemosphere.2022.135310
  • Moharami, S., & Jalali, M. (2014). Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution. Environmental Progress & Sustainable Energy, 33(4), 1209–1219. https://doi.org/10.1002/ep.11917
  • Nur, T., Johir, M. A. H., Loganathan, P., Nguyen, T., Vigneswaran, S., & Kandasamy, J. (2014). Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. Journal of Industrial and Engineering Chemistry, 20(4), 1301–1307. https://doi.org/10.1016/j.jiec.2013.07.009
  • Pan, B., Wu, J., Pan, B., Lv, L., Zhang, W., Xiao, L., Wang, X., Tao, X., & Zheng, S. (2009). Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Research, 43(17), 4421–4429. https://doi.org/10.1016/j.watres.2009.06.055
  • Persson, I., Trublet, M., & Klysubun, W. (2018). Structure determination of phosphoric acid and phosphate ions in aqueous solution using EXAFS spectroscopy and large angle X-ray scattering. The Journal of Physical Chemistry. A, 122(37), 7413–7420. https://doi.org/10.1021/acs.jpca.8b05641
  • Prot, T., Nguyen, V. H., Wilfert, P., Dugulan, A. I., Goubitz, K., De Ridder, D. J., Korving, L., Rem, P., Bouderbala, A., Witkamp, G. J., & van Loosdrecht, M. C. M. (2019). Magnetic separation and characterization of vivianite from digested sewage sludge. Separation and Purification Technology, 224, 564–579. https://doi.org/10.1016/j.seppur.2019.05.057
  • Qin, Y., Wu, X., Huang, Q., Beiyuan, J., Wang, J., Liu, J., Yuan, W., Nie, C., & Wang, H. (2023). Phosphate removal mechanisms in aqueous solutions by three different Fe-modified biochars. International Journal of Environmental Research and Public Health, 20(1), 326. https://doi.org/10.3390/ijerph20010326
  • Qing, Z., Wang, L., Liu, X., Song, Z., Qian, F., & Song, Y. (2022). Simply synthesized sodium alginate/zirconium hydrogel as adsorbent for phosphate adsorption from aqueous solution: Performance and mechanisms. Chemosphere, 291, 133103. https://doi.org/10.1016/j.chemosphere.2021.133103
  • Rahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2007). Geometry, charge distribution, and surface speciation of phosphate on goethite. Langmuir : The ACS Journal of Surfaces and Colloids, 23(7), 3680–3689. https://doi.org/10.1021/la062965n
  • Ramirez, A., Giraldo, S., Garcia-Nunez, J., Florez, E., & Acelas, N. (2018). Phosphate removal from water using a hybrid material in a fixed-bed column. Journal of Water Process Engineering, 26, 131–137. https://doi.org/10.1016/j.jwpe.2018.10.008
  • Ren, J., Li, N., Li, L., An, J. K., Zhao, L., & Ren, N. Q. (2015). Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresource Technology, 178, 119–125. https://doi.org/10.1016/j.biortech.2014.09.071
  • Robalds, A., Dreijalte, L., Bikovens, O., & Klavins, M. (2016). A novel peat-based biosorbent for the removal of phosphate from synthetic and real wastewater and possible utilization of spent sorbent in land application. Desalination and Water Treatment, 57(28), 13285–13294. https://doi.org/10.1080/19443994.2015.1061450
  • Ruttenberg, K. C., & Sulak, D. J. (2011). Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochimica et Cosmochimica Acta, 75(15), 4095–4112. https://doi.org/10.1016/j.gca.2010.10.033
  • Sabur, M. A., Parsons, C. T., Maavara, T., & Van Cappellen, P. (2022). Effects of pH and dissolved silicate on phosphate mineral-water partitioning with goethite. ACS Earth and Space Chemistry, 6(1), 34–43. https://doi.org/10.1021/acsearthspacechem.1c00197
  • Santos, A. F., Almeida, P. V., Alvarenga, P., Gando-Ferreira, L. M., & Quina, M. J. (2021). From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere, 284, 131258. https://doi.org/10.1016/j.chemosphere.2021.131258
  • Sellner, B. M., Hua, G., & Ahiablame, L. M. (2019). Fixed bed column evaluation of phosphate adsorption and recovery from aqueous solutions using recycled steel byproducts. Journal of Environmental Management, 233, 595–602. https://doi.org/10.1016/j.jenvman.2018.12.070
  • Shemer, H., Armush, A., & Semiat, R. (2019). Reusability of iron oxyhydroxide agglomerates adsorbent for repetitive phosphate removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123680. https://doi.org/10.1016/j.colsurfa.2019.123680
  • Siwek, H., Bartkowiak, A., & Włodarczyk, M. (2019). Adsorption of phosphates from aqueous solutions on alginate/goethite hydrogel composite. Water, 11(4), 633. https://doi.org/10.3390/w11040633
  • Smotraiev, R., Nehrii, A., Koltsova, E., Anohina, A., Sorochkina, K., & Ratnaweera, H. (2022). Comparison of wastewater coagulation efficiency of pre-polymerised zirconium and traditional aluminium coagulants. Journal of Water Process Engineering, 47, 102827. https://doi.org/10.1016/j.jwpe.2022.102827
  • Sonal, S., & Mishra, B. K. (2021). A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants. Chemical Engineering Journal, 424, 130509. https://doi.org/10.1016/j.cej.2021.130509
  • Tao, R., Qu, M., Zhang, S., Quan, F., Zhang, M., Shen, W., & Mei, Y. (2022). Preparation of FeOOH supported by melamine sponge and its application for efficient phosphate removal. Journal of Environmental Chemical Engineering, 10(4), 108064. https://doi.org/10.1016/j.jece.2022.108064
  • Tiberg, C., Sjostedt, C., Eriksson, A. K., Klysubun, W., & Gustafsson, J. P. (2020). Phosphate competition with arsenate on poorly crystalline iron and aluminum (hydr)oxide mixtures. Chemosphere, 255, 126937. https://doi.org/10.1016/j.chemosphere.2020.126937
  • Torrent, J., Schwertmann, U., & BarrÓN, V. (1994). Phosphate sorption by natural hematites. European Journal of Soil Science, 45(1), 45–51. https://doi.org/10.1111/j.1365-2389.1994.tb00485.x
  • Varennes, E., Blanc, D., Azaïs, A., & Choubert, J.-M. (2023). Upgrading wastewater treatment plants to urban mines: Are metals worth it? Resources, Conservation and Recycling, 189, 106738. https://doi.org/10.1016/j.resconrec.2022.106738
  • Vodyanitskii, Y. N., & Shoba, S. A. (2016). Ferrihydrite in soils. Eurasian Soil Science, 49(7), 796–806. https://doi.org/10.1134/S1064229316070127
  • Wan, J., Zhu, C., Hu, J., Zhang, T. C., Richter-Egger, D., Feng, X., Zhou, A., & Tao, T. (2017). Zirconium-loaded magnetic interpenetrating network chitosan/poly(vinyl alcohol) hydrogels for phosphorus recovery from the aquatic environment. Applied Surface Science, 423, 484–491. https://doi.org/10.1016/j.apsusc.2017.06.201
  • Wang, J., Li, F., Wang, M., Wang, H., Elgarhy, A. H., Liu, G., Zhang, L., & Hu, R. (2022a). The effect of iron oxide types on the photochemical transformation of organic phosphorus in water. Chemosphere, 307, 135900. https://doi.org/10.1016/j.chemosphere.2022.135900
  • Wang, J., Shao, X., Liu, J., Zhang, Q., Ma, J., & Tian, G. (2020). Insight into the effect of structural characteristics of magnetic ZrO2/Fe3O4 nanocomposites on phosphate removal in water. Materials Chemistry and Physics, 249, 123024. https://doi.org/10.1016/j.matchemphys.2020.123024
  • Wang, J. X., Zhang, G. Q., Qiao, S., & Zhou, J. T. (2021). Magnetic Fe0/iron oxide-coated diatomite as a highly efficient adsorbent for recovering phosphorus from water. Chemical Engineering Journal, 412, 128696. https://doi.org/10.1016/j.cej.2021.128696
  • Wang, L., Putnis, C., Hövelmann, J., & Putnis, A. (2018). Interfacial precipitation of phosphate on hematite and goethite. Minerals, 8(5), 207. https://doi.org/10.3390/min8050207
  • Wang, R., Wilfert, P., Dugulan, I., Goubitz, K., Korving, L., Witkamp, G.-J., & van Loosdrecht, M. C. M. (2019). Fe(III) reduction and vivianite formation in activated sludge. Separation and Purification Technology, 220, 126–135. https://doi.org/10.1016/j.seppur.2019.03.024
  • Wang, S.-X., Huang, Y.-X., Wang, H., Lu, Y.-Y., He, W.-L., Li, J., Fan, N.-S., Huang, B.-C., & Jin, R.-C. (2023). A comparative study of different iron minerals on phosphorus capture from municipal wastewater and subsequent recovery as vivianite through acidogenic fermentation. Chemical Engineering Journal, 466, 143370. https://doi.org/10.1016/j.cej.2023.143370
  • Wang, X., Hu, Y., Tang, Y., Yang, P., Feng, X., Xu, W., & Zhu, M. (2017). Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environmental Science: Nano, 4(11), 2193–2204. https://doi.org/10.1039/C7EN00705A
  • Wang, X., Li, W., Harrington, R., Liu, F., Parise, J. B., Feng, X., & Sparks, D. L. (2013). Effect of ferrihydrite crystallite size on phosphate adsorption reactivity. Environmental Science & Technology, 47(18), 10322–10331. https://doi.org/10.1021/es401301z
  • Wang, Z., Guan, S., Wang, Y., Li, W., Shi, K., Li, J., & Xu, Z. (2022b). High purity struvite recovery from hydrothermally-treated sludge supernatant using Magnetic zirconia adsorbent. International Journal of Environmental Research and Public Health, 19(20), 13156. https://doi.org/10.3390/ijerph192013156
  • Wang, Z., Xing, M., Fang, W., & Wu, D. (2016). One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water. Applied Surface Science, 366, 67–77. https://doi.org/10.1016/j.apsusc.2016.01.059
  • Wendling, L. A., Blomberg, P., Sarlin, T., Priha, O., & Arnold, M. (2013). Phosphorus sorption and recovery using mineral-based materials: Sorption mechanisms and potential phytoavailability. Applied Geochemistry, 37, 157–169. https://doi.org/10.1016/j.apgeochem.2013.07.016
  • Weng, Y., Vekeman, J., Zhang, H., Chou, L., Elskens, M., & Tielens, F. (2020). Unravelling phosphate adsorption on hydrous ferric oxide surfaces at the molecular level. Chemosphere, 261, 127776. https://doi.org/10.1016/j.chemosphere.2020.127776
  • Wu, B., Fang, L., Fortner, J. D., Guan, X., & Lo, I. M. C. (2017). Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Research, 126, 179–188. https://doi.org/10.1016/j.watres.2017.09.034
  • Wu, Y., Wang, C., Wang, S., An, J., Liang, D., Zhao, Q., Tian, L., Wu, Y., Wang, X., & Li, N. (2021). Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement. Water Research, 189, 116663. https://doi.org/10.1016/j.watres.2020.116663
  • Wu, Z.-Y., Zhao, H., Hu, X., Yuan, B., & Fu, M.-L. (2019). Tunable porous ferric composite for effective removal of phosphate in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123854. https://doi.org/10.1016/j.colsurfa.2019.123854
  • Xia, W. J., Xu, L. Z. J., Yu, L. Q., Zhang, Q., Zhao, Y. H., Xiong, J. R., Zhu, X. Y., Fan, N. S., Huang, B. C., & Jin, R. C. (2020). Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Science of the Total Environment, 705, 135959. https://doi.org/10.1016/j.scitotenv.2019.135959
  • Xie, F., Wu, F., Liu, G., Mu, Y., Feng, C., Wang, H., & Giesy, J. P. (2014). Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite. Environmental Science & Technology, 48(1), 582–590. https://doi.org/10.1021/es4037379
  • Xu, J., Koopal, L. K., Wang, M., Xiong, J., Hou, J., Li, Y., & Tan, W. (2019). Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. Environmental Science: Nano, 6(12), 3625–3637. https://doi.org/10.1039/C9EN00539K
  • Yan, H., Chen, Q., Liu, J., Feng, Y., & Shih, K. (2018). Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Research, 145, 721–730. https://doi.org/10.1016/j.watres.2018.09.005
  • Yang, L., Shan, X., Zhao, Y., Xiao, Z., An, Q., & Zhai, S. (2022). Efficient phosphate capture of Fe3O4/UiO-66-NH2/CeO2 in wide pH spectrum. Microporous and Mesoporous Materials, 331, 111653. https://doi.org/10.1016/j.micromeso.2021.111653
  • Yang, X., Zhang, C., Zhang, X., Deng, S., Cheng, X., & Waite, T. D. (2023). Phosphate recovery from aqueous solutions via vivianite crystallization: Interference of FeII oxidation at different DO concentrations and pHs. Environmental Science & Technology, 57(5), 2105–2117. https://doi.org/10.1021/acs.est.2c06668
  • Yuan, Q., Wang, S., Wang, X., & Li, N. (2021). Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. Science of the Total Environment, 762, 143076. https://doi.org/10.1016/j.scitotenv.2020.143076
  • Yuan, Z., Pratt, S., & Batstone, D. J. (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878–883. https://doi.org/10.1016/j.copbio.2012.08.001
  • Zhang, H., Elskens, M., Chen, G., & Chou, L. (2019a). Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs. Chemosphere, 225, 352–359. https://doi.org/10.1016/j.chemosphere.2019.03.068
  • Zhang, M., Zheng, K., Jin, J., Yu, X., Qiu, L., Ding, S., Lu, H., Cai, J., & Zheng, P. (2013). Effects of Fe(II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Separation and Purification Technology, 118, 801–805. https://doi.org/10.1016/j.seppur.2013.08.034
  • Zhang, R., Leiviska, T., Taskila, S., & Tanskanen, J. (2018). Iron-loaded Sphagnum moss extract residue for phosphate removal. Journal of Environmental Management, 218, 271–279. https://doi.org/10.1016/j.jenvman.2018.04.055
  • Zhang, R., Wang, L., Hussain Lakho, F., Yang, X., Depuydt, V., Igodt, W., Quan Le, H., Rousseau, D. P. L., & Van Hulle, S. (2022). Iron oxide coated sand (IOS): Scale-up analysis and full-scale application for phosphorus removal from goat farm wastewater. Separation and Purification Technology, 284, 120213. https://doi.org/10.1016/j.seppur.2021.120213
  • Zhang, T., Zhao, Y., Kang, S., Li, Y., & Zhang, Q. (2019b). Formation of active Fe(OH)3 in situ for enhancing arsenic removal from water by the oxidation of Fe(II) in air with the presence of CaCO3. Journal of Cleaner Production, 227, 1–9. https://doi.org/10.1016/j.jclepro.2019.04.199
  • Zhang, X., Gang, D. D., Sun, P., Lian, Q., & Yao, H. (2021a). Goethite dispersed corn straw-derived biochar for phosphate recovery from synthetic urine and its potential as a slow-release fertilizer. Chemosphere, 262, 127861. https://doi.org/10.1016/j.chemosphere.2020.127861
  • Zhang, X., Yao, H., Lei, X., Lian, Q., Roy, A., Doucet, D., Yan, H., Zappi, M. E., & Gang, D. D. (2021b). A comparative study for phosphate adsorption on amorphous FeOOH and goethite (alpha-FeOOH): An investigation of relationship between the surface chemistry and structure. Environmental Research, 199, 111223. https://doi.org/10.1016/j.envres.2021.111223
  • Zhang, Y., Guo, X., Wu, F., Yao, Y., Yuan, Y., Bi, X., Luo, X., Shahbazian-Yassar, R., Zhang, C., & Amine, K. (2016). Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment. ACS Applied Materials & Interfaces, 8(33), 21315–21325. https://doi.org/10.1021/acsami.6b05458
  • Zhang, Y., Zhang, W., & Pan, B. (2015). Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: Effect of solution chemistry. Chemosphere, 141, 227–234. https://doi.org/10.1016/j.chemosphere.2015.07.023
  • Zhang, Z., Yu, H., Zhu, R., Zhang, X., & Yan, L. (2020). Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions. Environmental Science and Pollution Research International, 27(22), 28132–28145. https://doi.org/10.1007/s11356-020-09166-5
  • Zheng, W., Sun, Y., & Gu, Y. (2022). Catalysis and adsorption of Zr-doped Fe3O4 nanoparticles provide a new strategy for diazinon removal and phosphorus recovery from aqueous solution. Journal of Environmental Chemical Engineering, 10(2), 107153. https://doi.org/10.1016/j.jece.2022.107153
  • Zhou, K., Wu, B., Su, L., Xin, W., & Chai, X. (2018). Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger. Chemical Engineering Journal, 345, 640–647. https://doi.org/10.1016/j.cej.2018.01.091
  • Zhou, R-y., Yu, J-x., Li, H-x., & Chi, R-a (2020). Removal of phosphate from aqueous solution by ferrihydrite/bagasse composite prepared through in situ precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125144. https://doi.org/10.1016/j.colsurfa.2020.125144
  • Zhu, S., Zhao, J., Zhao, N., Yang, X., Chen, C., & Shang, J. (2020). Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. Journal of Cleaner Production, 247, 119579. https://doi.org/10.1016/j.jclepro.2019.119579
  • Zhu, Z., Huang, C. P., Zhu, Y., Wei, W., & Qin, H. (2018). A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. Journal of Water Process Engineering, 25, 96–104. https://doi.org/10.1016/j.jwpe.2018.05.010
  • Zhu, Z., Zeng, H., Zhu, Y., Yang, F., Zhu, H., Qin, H., & Wei, W. (2013). Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure. Separation and Purification Technology, 117, 124–130. https://doi.org/10.1016/j.seppur.2013.05.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.