392
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Tree rings recording historical atmospheric mercury: A review of progresses and challenges

, ORCID Icon, , &
Pages 445-462 | Published online: 28 Aug 2023

References

  • Abreu, S. N., Soares, A. M. V. M., Nogueira, A. J. A., & Morgado, F. (2008). Tree rings, populus nigra l., as mercury data logger in aquatic environments: Case study of an historically contaminated environment. Bulletin of Environmental Contamination and Toxicology, 80(3), 294–299. https://doi.org/10.1007/s00128-008-9366-0
  • Ahn, Y. S., Jung, R., & Moon, J.-H. (2020). Approaches to understand historical changes of mercury in tree rings of Japanese Cypress in Industrial Areas. Forests, 11(8), 800. https://doi.org/10.3390/f11080800
  • Arnold, J., Gustin, M. S., & Weisberg, P. J. (2018). Evidence for nonstomatal uptake of Hg by Aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environmental Science & Technology, 52(3), 1174–1182. https://doi.org/10.1021/acs.est.7b04468
  • Assad, M., Parelle, J., Cazaux, D., Gimbert, F., Chalot, M., & Tatin-Froux, F. (2016). Mercury uptake into poplar leaves. Chemosphere, 146, 1–7. https://doi.org/10.1016/j.chemosphere.2015.11.103
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
  • Bishop, K. H., Lee, Y. H., Munthe, J., & Dambrine, E. (1998). Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40(2/3), 101–113. https://doi.org/10.1023/A:1005983932240
  • Blum, J. D., & Bergquist, B. A. (2007). Reporting of variations in the natural isotopic composition of mercury. Analytical and Bioanalytical Chemistry, 388(2), 353–359. https://doi.org/10.1007/s00216-007-1236-9
  • Blum, J. D., Sherman, L. S., & Johnson, M. W. (2014). Mercury isotopes in earth and environmental sciences. Annual Review of Earth and Planetary Sciences, 42(1), 249–269. https://doi.org/10.1146/annurev-earth-050212-124107
  • Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., & Siepak, J. (2008). Mercury mobility and bioavailability in soil from contaminated area. Environmental Geology, 55(5), 1075–1087. https://doi.org/10.1007/s00254-007-1056-4
  • Carrasco-Gil, S., Siebner, H., Leduc, D. L., Webb, S. M., Millan, R., Andrews, J. C., & Hernandez, L. E. (2013). Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environmental Science & Technology, 47(7), 3082–3090. https://doi.org/10.1021/es303310t
  • Chellman, N., Csank, A., Gustin, M. S., Arienzo, M. M., Vargas Estrada, M., & McConnell, J. R. (2020). Comparison of co-located ice-core and tree-ring mercury records indicates potential radial translocation of mercury in whitebark pine. The Science of the Total Environment, 743, 140695. https://doi.org/10.1016/j.scitotenv.2020.140695
  • Chen, C. Y., Driscoll, C. T., Eagles-Smith, C. A., Eckley, C. S., Gay, D. A., Hsu-Kim, H., Keane, S. E., Kirk, J. L., Mason, R. P., Obrist, D., Selin, H., Selin, N. E., & Thompson, M. R. (2018). A critical time for mercury science to inform global policy. Environmental Science & Technology, 52(17), 9556–9561. https://doi.org/10.1021/acs.est.8b02286
  • Chen, L., Wang, H. H., Liu, J. F., Tong, Y. D., Ou, L. B., Zhang, W., Hu, D., Chen, C., & Wang, X. J. (2014). Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmospheric Chemistry and Physics, 14(18), 10163–10176. https://doi.org/10.5194/acp-14-10163-2014
  • Cheng, Z., Buckley, B. M., Katz, B., Wright, W., Bailey, R., Smith, K. T., Li, J., Curtis, A., & Geen, A. (2007). Arsenic in tree rings at a highly contaminated site. The Science of the Total Environment, 376(1-3), 324–334. https://doi.org/10.1016/j.scitotenv.2007.01.074
  • Chiarantini, L., Rimondi, V., Benvenuti, M., Beutel, M. W., Costagliola, P., Gonnelli, C., Lattanzi, P., & Paolieri, M. (2016). Black pine (pinus nigra) barks as biomonitors of airborne mercury pollution. The Science of the Total Environment, 569-570, 105–113. https://doi.org/10.1016/j.scitotenv.2016.06.029
  • Chiarantini, L., Rimondi, V., Bardelli, F., Benvenuti, M., Cosio, C., Costagliola, P., Di Benedetto, F., Lattanzi, P., & Sarret, G. (2017). Mercury speciation in pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environmental Pollution (Barking, Essex: 1987), 227, 83–88. https://doi.org/10.1016/j.envpol.2017.04.038
  • Clackett, S. P., Porter, T. J., & Lehnherr, I. (2018). 400-year record of atmospheric mercury from tree-rings in northwestern Canada. Environmental Science & Technology, 52(17), 9625–9633. https://doi.org/10.1021/acs.est.8b01824
  • Clackett, S. P., Porter, T. J., & Lehnherr, I. (2021). The tree-ring mercury record of Klondike gold mining at Bear Creek, central Yukon. Environmental Pollution (Barking, Essex: 1987), 268(Pt B), 115777. https://doi.org/10.1016/j.envpol.2020.115777
  • Converse, A. D., Riscassi, A. L., & Scanlon, T. M. (2010). Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environment, 44(18), 2176–2185. https://doi.org/10.1016/j.atmosenv.2010.03.024
  • Cook, E. R., Shiyatov, S., & Mazepa, V. (1990). Estimation of the mean chronology. In: Fritts H.C., Guiot J., Gordon G. A., eds. Methods of dendrochronology-applications in the environmental sciences. Academic Publishers.
  • Cooke, C. A., Martinez-Cortizas, A., Bindler, R., & Sexauer Gustin, M. (2020). Environmental archives of atmospheric Hg deposition - a review. The Science of the Total Environment, 709, 134800. https://doi.org/10.1016/j.scitotenv.2019.134800
  • Cui, L. W., Feng, X. B., Lin, C.-J., Wang, X. M., Meng, B., Wang, X., & Wang, H. (2014). Accumulation and translocation of 198Hg in four crop species. Environmental Toxicology and Chemistry, 33(2), 334–340. https://doi.org/10.1002/etc.2443
  • Cutter, B. E., & Guyette, R. P. (1993). Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. Journal of Environmental Quality, 22(3), 611–619. https://doi.org/10.2134/jeq1993.00472425002200030028x
  • Demers, J. D., Blum, J. D., & Zak, D. R. (2013). Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27(1), 222–238. https://doi.org/10.1002/gbc.20021
  • Eccles, K. M., Majeed, H., Porter, T. J., & Lehnherr, I. (2020). A continental and marine-influenced tree-ring mercury record in the old crow flats, Yukon, Canada. ACS Earth and Space Chemistry, 4(8), 1281–1290. https://doi.org/10.1021/acsearthspacechem.0c00081
  • England, J. R., & Attiwill, P. M. (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 20(1), 79–90. https://doi.org/10.1007/s00468-005-0015-5
  • Engstrom, D. R., Fitzgerald, W. F., Cooke, C. A., Lamborg, C. H., Drevnick, P. E., Swain, E. B., Balogh, S. J., & Balcom, P. H. (2014). Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake-sediment archives. Environmental Science & Technology, 48(12), 6533–6543. https://doi.org/10.1021/es405558e
  • Enrico, M., Le Roux, G., Heimburger, L. E., Van Beek, P., Souhaut, M., Chmeleff, J., & Sonke, J. E. (2017). Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environmental Science & Technology, 51(11), 5899–5906. https://doi.org/10.1021/acs.est.6b05804
  • Enrico, M., Roux, G. L., Marusczak, N., Heimburger, L. E., Claustres, A., Fu, X., Sun, R., & Sonke, J. E. (2016). Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environmental Science & Technology, 50(5), 2405–2412. https://doi.org/10.1021/acs.est.5b06058
  • Evans, M., Muir, D., Brua, R. B., Keating, J., & Wang, X. (2013). Mercury trends in predatory fish in great slave lake: The influence of temperature and other climate drivers. Environmental Science & Technology, 47(22), 12793–12801. https://doi.org/10.1021/es402645x
  • Eyrikh, S., Eichler, A., Tobler, L., Malygina, N., Papina, T., & Schwikowski, M. (2017). A 320 year ice-core record of atmospheric Hg pollution in the Altai, central Asia. Environmental Science & Technology, 51(20), 11597–11606. https://doi.org/10.1021/acs.est.7b03140
  • Fleck, J. A., Grigal, D. F., & Nater, E. A. (1999). Mercury uptake by trees: An observational experiment. Water, Air, and Soil Pollution, 115(1/4), 513–523. https://doi.org/10.1023/A:1005194608598
  • Frescholtz, T. F. G., M. S., Schorran, D. E., & Fernandez, G. C. J. (2003). Assessing the source of mercury in foliar tissue of quaking Aspen. Environmental Toxicology and Chemistry, 22(9), 2114–2119. https://doi.org/10.1002/etc.5620220922
  • Fu, X., Jiskra, M., Yang, X., Marusczak, N., Enrico, M., Chmeleff, J., Heimburger-Boavida, L. E., Gheusi, F., & Sonke, J. E. (2021). Mass-independent fractionation of even and odd mercury isotopes during atmospheric mercury redox reactions. Environmental Science & Technology, 55(14), 10164–10174. https://doi.org/10.1021/acs.est.1c02568
  • Fu, X. W., F, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (gem) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 10(5), 2425–2437. https://doi.org/10.5194/acp-10-2425-2010
  • Ghotra, A., Lehnherr, I., Porter, T. J., & Pisaric, M. F. J. (2020). Tree-ring inferred atmospheric mercury concentrations in the Mackenzie Delta (NWT, Canada) peaked in the 1970s but are increasing once more. ACS Earth and Space Chemistry, 4(3), 457–466. https://doi.org/10.1021/acsearthspacechem.0c00003
  • Graydon, J. A., St Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W., Kelly, C. A., Tate, M. T., Krabbenhoft, D. P., & Lehnherr, I. (2009). Investigation of uptake and retention of atmospheric Hg(ii) by boreal forest plants using stable Hg isotopes. Environmental Science & Technology, 43(13), 4960–4966. https://doi.org/10.1021/es900357s
  • Greger, M., Wang, Y., & Neuschutz, C. (2005). Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution (Barking, Essex: 1987), 134(2), 201–208. https://doi.org/10.1016/j.envpol.2004.08.007
  • Guedron, S., Amouroux, D., Tessier, E., Grimaldi, C., Barre, J., Berail, S., Perrot, V., & Grimaldi, M. (2018). Mercury isotopic fractionation during pedogenesis in a tropical forest soil catena (French Guiana): Deciphering the impact of historical gold mining. Environmental Science & Technology, 52(20), 11573–11582. https://doi.org/10.1021/acs.est.8b02186
  • Guerrero, S. (2016). The history of silver refining in New Spain, 16c to 18c: Back to the basics. History and Technology, 32(1), 2–32. https://doi.org/10.1080/07341512.2016.1191864
  • Gustin, M. S., Ingle, B., & Dunham-Cheatham, S. M. (2022a). Further investigations into the use of tree rings as archives of atmospheric mercury concentrations. Biogeochemistry, 158(2), 167–180. https://doi.org/10.1007/s10533-022-00892-1
  • Gustin, M. S., Dunham-Cheatham, S. M., Harper, J. F., Choi, W. G., Blum, J. D., & Johnson, M. W. (2022b). Investigation of the biochemical controls on mercury uptake and mobility in trees. The Science of the Total Environment, 851(Pt 1), 158101. https://doi.org/10.1016/j.scitotenv.2022.158101
  • Hagemeyer, J., & Schafer, H. (1995). Seasonal variations in concentrations and radial distribution patterns of Cd, Pb and Zn in stem wood of beech trees (Fagus sylvatica L.). Science of the Total Environment, 166(1-3), 77–87. https://doi.org/10.1016/0048-9697(95)04476-H
  • Hojdová, M., Navrátil, T., Rohovec, J., Žák, K., Vaněk, A., Chrastný, V., Bače, R., & Svoboda, M. (2011). Changes in mercury deposition in a mining and smelting region as recorded in tree rings. Water, Air, & Soil Pollution, 216(1-4), 73–82. https://doi.org/10.1007/s11270-010-0515-9
  • Horowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., & Sunderland, E. M. (2014). Historical mercury releases from commercial products: Global environmental implications. Environmental Science & Technology, 48(17), 10242–10250. https://doi.org/10.1021/es501337j
  • Hubbard, R. M., Bond, B. J., & Ryan, M. G. (1999). Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiology, 19(3), 165–172. https://doi.org/10.1093/treephys/19.3.165
  • Jung, R., & Ahn, Y. S. (2017). Distribution of mercury concentrations in tree rings and surface soils adjacent to a phosphate fertilizer plant in southern Korea. Bulletin of Environmental Contamination and Toxicology, 99(2), 253–257. https://doi.org/10.1007/s00128-017-2115-5
  • Kang, H., Liu, X., Guo, J., Zhang, Q., Wang, Y., Huang, J., Xu, G., Wu, G., Ge, W., & Kang, S. (2022). Long-term mercury variations in tree rings of the permafrost forest, northeastern China. Science China Earth Sciences, 65(7), 1328–1338. https://doi.org/10.1007/s11430-021-9886-1
  • Kang, H. H., Liu, X. H., Guo, J. M., Xu, G. B., Wu, G. J., Zeng, X. M., Wang, B., & Kang, S. C. (2018). Increased mercury pollution revealed by tree rings from the China’s Tianshan Mountains. Science Bulletin, 63(20), 1328–1331. https://doi.org/10.1016/j.scib.2018.09.010
  • Kang, H. H., Liu, X. H., Guo, J. M., Wang, B., Xu, G. B., Wu, G. J., Kang, S. C., & Huang, J. (2019). Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, northwestern China. Ecological Indicators, 104, 24–31. https://doi.org/10.1016/j.ecolind.2019.04.066
  • Kang, S. C., Huang, J., Wang, F. Y., Zhang, Q. G., Zhang, Y. L., Li, C. L., Wang, L., Chen, P. F., Sharma, C. M., Li, Q., Sillanpaa, M., Hou, J. Z., Xu, B. Q., & Guo, J. M. (2016). Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 50(6), 2859–2869. https://doi.org/10.1021/acs.est.5b04172
  • Kwon, S. Y., Blum, J. D., Yin, R., Tsui, M. T.-K., Yang, Y. H., & Choi, J. W. (2020). Mercury stable isotopes for monitoring the effectiveness of the minamata convention on mercury. Earth-Science Reviews, 203, 103111. https://doi.org/10.1016/j.earscirev.2020.103111
  • Laacouri, A., Nater, E. A., & Kolka, R. K. (2013). Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, u.S.A. Environmental Science & Technology, 47(18), 10462–10470. https://doi.org/10.1021/es401357z
  • Lageard, J. G., Howell, J. A., Rothwell, J. J., & Drew, I. B. (2008). The utility of pinus sylvestris l. In dendrochemical investigations: Pollution impact of lead mining and smelting in darley dale, derbyshire, uk. Environmental Pollution (Barking, Essex: 1987), 153(2), 284–294. https://doi.org/10.1016/j.envpol.2007.08.031
  • Lehnherr, I. (2014). Methylmercury biogeochemistry: A review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 22(3), 229–243. https://doi.org/10.1139/er-2013-0059
  • Liu, X., Wang, X., & Wang, D. (2024). Assessment of tree-ring mercury radial translocation and age effect in masson pine: Implications for historical atmospheric mercury reconstruction. Journal of Environmental Sciences, 138, 266–276. https://doi.org/10.1016/j.jes.2022.10.027
  • Liu, Y., Liu, G., Wang, Z., Guo, Y., Yin, Y., Zhang, X., Cai, Y., & Jiang, G. (2021a). Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges. Critical Reviews in Environmental Science and Technology, 52(24), 4331–4352. https://doi.org/10.1080/10643389.2021.1989235
  • Liu, Y., Tao, H., Wang, Y., Fang, Y., Xiang, Y., Liu, G., Guo, Y., Liu, J., Yin, Y., Cai, Y., & Jiang, G. (2021b). Gaseous elemental mercury [Hg(0)] oxidation in poplar leaves through a two-step single-electron transfer process. Environmental Science & Technology Letters, 8(12), 1098–1103. https://doi.org/10.1021/acs.estlett.1c00735
  • Lu, Z., Yuan, W., Luo, K., & Wang, X. (2021). Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes. Environmental Pollution (Barking, Essex: 1987), 268(Pt A), 115867. https://doi.org/10.1016/j.envpol.2020.115867
  • Maillard, F., Girardclos, O., Assad, M., Zappelini, C., Perez Mena, J. M., Yung, L., Guyeux, C., Chretien, S., Bigham, G., Cosio, C., & Chalot, M. (2016). Dendrochemical assessment of mercury releases from a pond and dredged-sediment landfill impacted by a chlor-alkali plant. Environmental Research, 148, 122–126. https://doi.org/10.1016/j.envres.2016.03.034
  • Manceau, A., Wang, J., Rovezzi, M., Glatzel, P., & Feng, X. (2018). Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury. Environmental Science & Technology, 52(7), 3935–3948. https://doi.org/10.1021/acs.est.7b05452
  • Mao, Y., Li, Y., Richards, J., & Cai, Y. (2013). Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique. Environmental Science & Technology, 47(17), 9678–9684. https://doi.org/10.1021/es400546s
  • McLagan, D. S., Biester, H., Navrátil, T., Kraemer, S. M., & Schwab, L. (2022). Internal tree cycling and atmospheric archiving of mercury: Examination with concentration and stable isotope analyses. Biogeosciences, 19(17), 4415–4429. https://doi.org/10.5194/bg-19-4415-2022
  • Millhollen, A. G., G, M. S., & Obrist, D. (2006). Foliar mercury accumulation and exchange for three tree species. Environmental Science & Technology, 40(19), 6001–6006. https://doi.org/10.1021/es0609194
  • Navratil, T., Simecek, M., Shanley, J. B., Rohovec, J., Hojdova, M., & Houska, J. (2017). The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. The Science of the Total Environment, 586, 1182–1192. https://doi.org/10.1016/j.scitotenv.2017.02.112
  • Navrátil, T., Nováková, T., Shanley, J. B., Rohovec, J., Matoušková, Š., Vaňková, M., & Norton, S. A. (2018). Larch tree rings as a tool for reconstructing 20th century central European atmospheric mercury trends. Environmental Science & Technology, 52(19), 11060–11068. https://doi.org/10.1021/acs.est.8b02117
  • Novakova, T., Navratil, T., Demers, J. D., Roll, M., & Rohovec, J. (2021). Contrasting tree ring Hg records in two conifer species: Multi-site evidence of species-specific radial translocation effects in Scots pine versus European larch. The Science of the Total Environment, 762, 144022. https://doi.org/10.1016/j.scitotenv.2020.144022
  • Novakova, T., Navratil, T., Schutze, M., Rohovec, J., Matouskova, S., Hosek, M., & Matys Grygar, T. (2022). Reconstructing atmospheric Hg levels near the oldest chemical factory in central europe using a tree ring archive. Environmental Pollution (Barking, Essex: 1987), 304, 119215. https://doi.org/10.1016/j.envpol.2022.119215
  • Okada, N., Hirakawa, Y., & Katayama, Y. (2012). Radial movement of sapwood-injected rubidium into heartwood of Japanese cedar (Cryptomeria japonica) in the growing period. Journal of Wood Science, 58(1), 1–8. https://doi.org/10.1007/s10086-011-1218-6
  • Pang, Q., Gu, J., Wang, H., & Zhang, Y. (2022). Global health impact of atmospheric mercury emissions from artisanal and small-scale gold mining. iScience, 25(9), 104881. https://doi.org/10.1016/j.isci.2022.104881
  • Peckham, M. A., Gustin, M. S., & Weisberg, P. J. (2019a). Assessment of the suitability of tree rings as archives of global and regional atmospheric mercury pollution. Environmental Science & Technology, 53(7), 3663–3671. https://doi.org/10.1021/acs.est.8b06786
  • Peckham, M. A., Gustin, M. S., Weisberg, P. J., & Weiss-Penzias, P. (2019b). Results of a controlled field experiment to assess the use of tree tissue concentrations as bioindicators of air Hg. Biogeochemistry, 142(2), 265–279. https://doi.org/10.1007/s10533-018-0533-z
  • Rodriguez Martin, J. A., Nanos, N., Miranda, J. C., Carbonell, G., & Gil, L. (2013). Volcanic mercury in pinus canariensis. Die Naturwissenschaften, 100(8), 739–747. https://doi.org/10.1007/s00114-013-1070-1
  • Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J., Olson, M. R., Clary, A., Robinson, M., Parman, A. M., & Katzman, T. L. (2011). Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species. Environmental Science & Technology, 45(2), 569–575. https://doi.org/10.1021/es102687b
  • Scanlon, T. M., Riscassi, A. L., Demers, J. D., Camper, T. D., Lee, T. R., & Druckenbrod, D. L. (2020). Mercury accumulation in tree rings: Observed trends in quantity and isotopic composition in Shenandoah National Park, Virginia. Journal of Geophysical Research: Biogeosciences, 125(2) https://doi.org/10.1029/2019JG005445
  • Schneider, L., Allen, K., Walker, M., Morgan, C., & Haberle, S. (2019). Using tree rings to track atmospheric mercury pollution in Australia: The legacy of mining in Tasmania. Environmental Science & Technology, 53(10), 5697–5706. https://doi.org/10.1021/acs.est.8b06712
  • Schreiber, L. (2005). Polar paths of diffusion across plant cuticles: New evidence for an old hypothesis. Annals of Botany, 95(7), 1069–1073. https://doi.org/10.1093/aob/mci122
  • Schuster, P. F., K, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D., Green, J. R., & Abbott, M. L. (2002). Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environmental Science & Technology, 36(11), 2303–2310. https://doi.org/10.1021/es0157503
  • Schwarz, P. A., Fahey, T. J., & Dawson, T. E. (1997). Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiology, 17(3), 187–194. https://doi.org/10.1093/treephys/17.3.187
  • Selin, H., & Selin, N. E. (2022). From stockholm to minamata and beyond: Governing mercury pollution for a more sustainable future. One Earth, 5(10), 1109–1125. https://doi.org/10.1016/j.oneear.2022.09.001
  • Şen, A., Pereira, H., Olivella, M. A., & Villaescusa, I. (2015). Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology, 12(1), 391–404. https://doi.org/10.1007/s13762-014-0525-z
  • Shah, V., Jacob, D. J., Thackray, C. P., Wang, X., Sunderland, E. M., Dibble, T. S., Saiz-Lopez, A., Černušák, I., Kellö, V., Castro, P. J., Wu, R., & Wang, C. (2021). Improved mechanistic model of the atmospheric redox chemistry of mercury. Environmental Science & Technology, 55(21), 14445–14456. https://doi.org/10.1021/acs.est.1c03160
  • Siwik, E. I., Campbell, L. M., & Mierle, G. (2010). Distribution and trends of mercury in deciduous tree cores. Environmental Pollution (Barking, Essex: 1987), 158(6), 2067–2073. https://doi.org/10.1016/j.envpol.2010.03.002
  • Sonke, J. E., & Blum, J. D. (2013). Advances in mercury stable isotope biogeochemistry. Chemical Geology, 336, 1–4. https://doi.org/10.1016/j.chemgeo.2012.10.035
  • Sonke, J. E., Angot, H., Zhang, Y., Poulain, A., Bjorn, E., & Schartup, A. (2023). Global change effects on biogeochemical mercury cycling. Ambio, 52(5), 853–876. https://doi.org/10.1007/s13280-023-01855-y
  • Stamenkovic, J., & Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science & Technology, 43(5), 1367–1372. https://doi.org/10.1021/es801583a
  • Stewart, C. M. (1966). Excretion and hearthwood formation in living trees. Science (New York, N.Y.), 153(3740), 1068–1074. https://doi.org/10.1126/science.153.3740.1068
  • Stoffberg, G. H., van Rooyen, M. W., van der Linde, M. J., & Groeneveld, H. T. (2008). Predicting the growth in tree height and crown size of three street tree species in the City of Tshwane, South Africa. Urban Forestry & Urban Greening, 7(4), 259–264. https://doi.org/10.1016/j.ufug.2008.05.002
  • Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., & Jacob, D. J. (2011). All-time releases of mercury to the atmosphere from human activities. Environmental Science & Technology, 45(24), 10485–10491. https://doi.org/10.1021/es202765m
  • Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., Ter Schure, A. F. H., & Sunderland, E. M. (2017). Total mercury released to the environment by human activities. Environmental Science & Technology, 51(11), 5969–5977. https://doi.org/10.1021/acs.est.7b00451
  • Sun, R., Jiskra, M., Amos, H. M., Zhang, Y., Sunderland, E. M., & Sonke, J. E. (2019). Modelling the mercury stable isotope distribution of earth surface reservoirs: Implications for global Hg cycling. Geochimica et Cosmochimica Acta, 246, 156–173. https://doi.org/10.1016/j.gca.2018.11.036
  • UNEP. (2019). Global mercury assessment 2018. UNEP. Chemicals and Health Branch.
  • Wang, J. J., Guo, Y. Y., Guo, D. L., Yin, S. L., Kong, D. L., Liu, Y. S., & Zeng, H. (2012). Fine root mercury heterogeneity: Metabolism of lower-order roots as an effective route for mercury removal. Environmental Science & Technology, 46(2), 769–777. https://doi.org/10.1021/es2018708
  • Wang, X., Yuan, W., Lin, C.-J., & Feng, X. B. (2021a). Mercury cycling and isotopic fractionation in global forests. Critical Reviews in Environmental Science and Technology, 52(21), 3763–3786. https://doi.org/10.1080/10643389.2021.1961505
  • Wang, X., Yuan, W., Lin, C.-J., Wu, F., & Feng, X. B. (2021b). Stable mercury isotopes stored in Masson Pinus tree rings as atmospheric mercury archives. Journal of Hazardous Materials, 415, 125678. https://doi.org/10.1016/j.jhazmat.2021.125678
  • Wang, X., Yuan, W., Lin, C.-J., Luo, J., Wang, F. Y., Feng, X. B., Fu, X. W., & Liu, C. (2020a). Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environmental Science & Technology, 54(13), 8083–8093. https://doi.org/10.1021/acs.est.0c01667
  • Wang, X., Luo, J., Yuan, W., Lin, C. J., Wang, F., Liu, C., Wang, G., & Feng, X. (2020b). Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 2049–2055. https://doi.org/10.1073/pnas.1906930117
  • Watmough, S. A., & Hutchinson, T. C. (2002). Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. The Science of the Total Environment, 293(1-3), 85–96. https://doi.org/10.1016/S0048-9697(01)01149-4
  • Wohlgemuth, L., Rautio, P., Ahrends, B., Russ, A., Vesterdal, L., Waldner, P., Timmermann, V., Eickenscheidt, N., Fürst, A., Greve, M., Roskams, P., Thimonier, A., Nicolas, M., Kowalska, A., Ingerslev, M., Merilä, P., Benham, S., Iacoban, C., Hoch, G., Alewell, C., & Jiskra, M. (2022). Physiological and climate controls on foliar mercury uptake by European tree species. Biogeosciences, 19(5), 1335–1353. https://doi.org/10.5194/bg-19-1335-2022
  • Wright, G., Woodward, C., Peri, L., Weisberg, P. J., & Gustin, M. S. (2014). Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry, 120(1-3), 149–162. https://doi.org/10.1007/s10533-014-9987-9
  • Wu, Q. R., Wang, S. X., Li, G. L., Liang, S., Lin, C.-J., Wang, Y. F., Cai, S. Y., Liu, K. Y., & Hao, J. M. (2016). Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014. Environmental Science & Technology, 50(24), 13428–13435. https://doi.org/10.1021/acs.est.6b04308
  • Yanai, R. D., Yang, Y., Wild, A. D., Smith, K. T., & Driscoll, C. T. (2020). New approaches to understand mercury in trees: Radial and longitudinal patterns of mercury in tree rings and genetic control of mercury in maple sap. Water, Air, & Soil Pollution, 231(5), 1–10. https://doi.org/10.1007/s11270-020-04601-2
  • Yu, B., Yang, L., Liu, H., Xiao, C., Bu, D., Zhang, Q., Fu, J., Zhang, Q., Cong, Z., Liang, Y., Hu, L., Yin, Y., Shi, J., & Jiang, G. (2022). Tracing the transboundary transport of mercury to the Tibetan Plateau using atmospheric mercury isotopes. Environmental Science & Technology, 56(3), 1568–1577. https://doi.org/10.1021/acs.est.1c05816
  • Yuan, W., Wang, X., Lin, C.-J., Wu, F., Luo, K., Zhang, H., Lu, Z., & Feng, X. (2022). Mercury uptake, accumulation, and translocation in roots of subtropical forest: Implications of global mercury budget. Environmental Science & Technology, 56(19), 14154–14165. https://doi.org/10.1021/acs.est.2c04217
  • Yuan, W., Sommar, J., Lin, C. J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., & Feng, X. (2019). Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage. Environmental Science & Technology, 53(2), 651–660. https://doi.org/10.1021/acs.est.8b04865
  • Zhang, H., Fu, X. W., Lin, C. J., Wang, X., & Feng, X. B. (2015). Observation and analysis of speciated atmospheric mercury in shangri-la, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 15(2), 653–665. https://doi.org/10.5194/acp-15-653-2015
  • Zhang, L. M., Wright, L. P., & Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853–5864. https://doi.org/10.1016/j.atmosenv.2009.08.019
  • Zhang, Q., Pan, K., Kang, S., Zhu, A., & Wang, W. X. (2014). Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environmental Science & Technology, 48(9), 5220–5228. https://doi.org/10.1021/es404275v
  • Zhang, Y., Chen, J., Zheng, W., Sun, R., Yuan, S., Cai, H., Yang, D. A., Yuan, W., Meng, M., Wang, Z., Liu, Y., & Liu, J. (2020). Mercury isotope compositions in large anthropogenically impacted pearl river, south China. Ecotoxicology and Environmental Safety, 191, 110229. https://doi.org/10.1016/j.ecoenv.2020.110229
  • Zheng, W., Obrist, D., Weis, D., & Bergquist, B. A. (2016). Mercury isotope compositions across north american forests. Global Biogeochemical Cycles, 30(10), 1475–1492. https://doi.org/10.1002/2015GB005323
  • Zhou, J., & Obrist, D. (2021). Global mercury assimilation by vegetation. Environmental Science & Technology, 55(20), 14245–14257. https://doi.org/10.1021/acs.est.1c03530
  • Zuna, M., Ettler, V., Sebek, O., & Mihaljevic, M. (2012). Mercury accumulation in peatbogs at Czech sites with contrasting pollution histories. The Science of the Total Environment, 424, 322–330. https://doi.org/10.1016/j.scitotenv.2012.02.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.