449
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Key enzymes, functional genes, and metabolic pathways of the nitrogen removal-related microorganisms

, , , , &

References

  • Böllmann, J., Engelbrecht, S., & Martienssen, M. (2019). Autofluorescent characteristics of Candidatus Brocadia fulgida and the consequences for FISH and microscopic detection. Systematic and Applied Microbiology, 42(2), 135–144. https://doi.org/10.1016/j.syapm.2018.09.002
  • Camejo, P. Y., Santo Domingo, J., McMahon, K. D., Noguera, D. R., & Summers, Z. M. (2017). Genome-enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa. mSystems, 2(5), e00059-17. https://doi.org/10.1128/mSystems.00059-17
  • Chen, G., Bai, R., Zhang, Y., Zhao, B., & Xiao, Y. (2022). Application of metagenomics to biological wastewater treatment. The Science of the Total Environment, 807(Pt 1), 150737. https://doi.org/10.1016/j.scitotenv.2021.150737
  • Chen, L. F., Chen, L. X., Pan, D., Ren, Y. L., Zhang, J., Zhou, B., Lin, J. Q., & Lin, J. Q. (2022). Ammonium removal characteristics of Delftia tsuruhatensis SDU2 with potential application in ammonium‑rich wastewater treatment. International Journal of Environmental Science and Technology, 20(4), 3911–3926. https://doi.org/10.1007/s13762-022-04219-3
  • Chen, J., Gu, S., Hao, H., & Chen, J. (2016). Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Applied Microbiology and Biotechnology, 100(22), 9787–9794. https://doi.org/10.1007/s00253-016-7840-x
  • Chen, S., Ling, J., & Blancheton, J. P. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering, 34(3), 179–197. https://doi.org/10.1016/j.aquaeng.2005.09.004
  • Chen, H., Wang, H., Yu, G., Xiong, Y., Wu, H., Yang, M., Chen, R., Yang, E., Jiang, C., & Li, Y. Y. (2021). Key factors governing the performance and microbial community of one-stage partial nitritation and anammox system with bio-carriers and airlift circulation. Bioresource Technology, 324, 124668. https://doi.org/10.1016/j.biortech.2021.124668
  • Chen, J., Xu, J., Zhang, S., Liu, F., Peng, J., Peng, Y., & Wu, J. (2021). Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14. Journal of Environmental Management, 282, 111961. https://doi.org/10.1016/j.jenvman.2021.111961
  • Chen, Y. Z., Zhang, L. J., Ding, L. Y., Zhang, Y. Y., Wang, X. S., Qiao, X. J., Pan, B. Z., Wang, Z. W., Xu, N., & Tao, H. C. (2022). Sustainable treatment of nitrate-containing wastewater by an autotrophic hydrogen-oxidizing bacterium. Environmental Science and Ecotechnology, 9, 100146. https://doi.org/10.1016/j.ese.2022.100146
  • Chen, P., Zhang, F., Zhang, L., Liu, H., Zhang, Q., Xing, Z., & Zhao, T. (2022). Characterization of a novel salt-tolerant strain Sphingopyxis sp. CY-10 capable of heterotrophic nitrification and aerobic denitrification. Bioresource Technology, 358, 127353. https://doi.org/10.1016/j.biortech.2022.127353
  • Chen, S., Zhou, B., Chen, H., & Yuan, R. (2023). Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. Environmental Research, 216(Pt 4), 114687. https://doi.org/10.1016/j.envres.2022.114687
  • Chen, H., Zhou, W., Zhu, S., Liu, F., Qin, L., Xu, C., & Wang, Z. (2021). Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification. Bioresource Technology, 322, 124507. https://doi.org/10.1016/j.biortech.2020.124507
  • Coelho, C., & Romão, M. J. (2015). Structural and mechanistic insights on nitrate reductases. Protein Science: A Publication of the Protein Society, 24(12), 1901–1911. https://doi.org/10.1002/pro.2801
  • Costa, E., Pérez, J., & Kreft, J. U. (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology, 14(5), 213–219. https://doi.org/10.1016/j.tim.2006.03.006
  • Cui, Y. X., Biswal, B. K., Guo, G., Deng, Y. F., Huang, H., Chen, G. H., & Wu, D. (2019). Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied Microbiology and Biotechnology, 103(15), 6023–6039. https://doi.org/10.1007/s00253-019-09935-4
  • Cui, Y., Cui, Y. W., & Huang, J. L. (2021). A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification. Bioresource Technology, 333, 125189. https://doi.org/10.1016/j.biortech.2021.125189
  • Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24(9), 699–712. https://doi.org/10.1016/j.tim.2016.05.004
  • Dale, O. R., Tobias, C. R., & Song, B. (2009). Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology, 11(5), 1194–1207. https://doi.org/10.1111/j.1462-2920.2008.01850.x
  • Di Capua, F., Iannacone, F., Sabba, F., & Esposito, G. (2022). Simultaneous nitrification–denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. Bioresource Technology, 361, 127702. https://doi.org/10.1016/j.biortech.2022.127702
  • Duan, J., Fang, H., Su, B., Chen, J., & Lin, J. (2015). Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresource Technology, 179(1873-2976 Electronic), 421–428. https://doi.org/10.1016/j.biortech.2014.12.057
  • Edwards, T. A., Calica, N. A., Huang, D. A., Manoharan, N., Hou, W., Huang, L., Panosyan, H., Dong, H., & Hedlund, B. P. (2013). Cultivation and characterization of thermophilicNitrospiraspecies from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiology Ecology, 85(2), 283–292. https://doi.org/10.1111/1574-6941.12117
  • Fu, X., Hou, R., Yang, P., Qian, S., Feng, Z., Chen, Z., Wang, F., Yuan, R., Chen, H., & Zhou, B. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. The Science of the Total Environment, 817, 153061. https://doi.org/10.1016/j.scitotenv.2022.153061
  • Gao, D., Wang, X., Liang, H., Wei, Q., Dou, Y., & Li, L. (2018). Anaerobic ammonia oxidizing bacteria: Ecological distribution, metabolism, and microbial interactions. Frontiers of Environmental Science & Engineering, 12(3), 10. https://doi.org/10.1007/s11783-018-1035-x
  • Ge, S., Wang, S., Yang, X., Qiu, S., Li, B., & Peng, Y. (2015). Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere, 140, 85–98. https://doi.org/10.1016/j.chemosphere.2015.02.004
  • Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M. C. M., Gonzalez-Lopez, J., & Vahala, R. (2016). Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environmental Science and Pollution Research International, 23(24), 25501–25511. https://doi.org/10.1007/s11356-016-7914-4
  • Hao, Z. L., Ali, A., Ren, Y., Su, J. F., & Wang, Z. (2022). A mechanistic review on aerobic denitrification for nitrogen removal in water treatment. The Science of the Total Environment, 847, 157452. https://doi.org/10.1016/j.scitotenv.2022.157452
  • Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J., & Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology, 139 Pt 6(6), 1147–1153. https://doi.org/10.1099/00221287-139-6-1147
  • He, T., Xie, D., Ni, J., Li, Z., & Li, Z. (2020). Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. Journal of Hazardous Materials, 388, 122114. https://doi.org/10.1016/j.jhazmat.2020.122114
  • He, T., Zhang, M., Chen, M., Wu, Q., Yang, L., & Yang, L. (2023). Klebsiella oxytoca (EN-B2): A novel type of simultaneous nitrification and denitrification strain for excellent total nitrogen removal during multiple nitrogen pollution wastewater treatment. Bioresource Technology, 367, 128236. https://doi.org/10.1016/j.biortech.2022.128236
  • Holmes, D. E., Dang, Y., & Smith, J. A. (2019). Nitrogen cycling during wastewater treatment. Advances in Applied Microbiology, 106, 113–192. https://doi.org/10.1016/bs.aambs.2018.10.003
  • Hosono, T., Alvarez, K., Lin, I.-T., & Shimada, J. (2015). Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions. Journal of Contaminant Hydrology, 183, 72–81. https://doi.org/10.1016/j.jconhyd.2015.10.009
  • Huang, M. Q., Cui, Y. W., Yang, H. J., Xu, M. J., Cui, Y., & Chen, Z. (2023). A halophilic aerobic-heterotrophic strain Halomonas venusta SND-01: Nitrogen removal by ammonium assimilation and heterotrophic nitrification-aerobic denitrification. Bioresource Technology, 374, 128758. https://doi.org/10.1016/j.biortech.2023.128758
  • Huang, C., Liu, Q., Li, Z. L., Ma, X. D., Hou, Y. N., Ren, N. Q., & Wang, A. J. (2021). Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. Water Research, 188, 116526. https://doi.org/10.1016/j.watres.2020.116526
  • Huang, F., Pan, L., He, Z., Zhang, M., & Zhang, M. (2020). Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics. The Science of the Total Environment, 732(732), 139268. https://doi.org/10.1016/j.scitotenv.2020.139268
  • Huang, F., Pan, L., Lv, N., & Tang, X. (2017). Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. Journal of Bioscience and Bioengineering, 124(5), 564–571. https://doi.org/10.1016/j.jbiosc.2017.06.008
  • Huang, X., Tie, W., Xie, D., Jiang, D., & Li, Z. (2021). Certain Environmental Conditions Maximize Ammonium Accumulation and Minimize Nitrogen Loss During Nitrate Reduction Process by Pseudomonas putida Y-9. Frontiers in Microbiology, 12, 764241. https://doi.org/10.3389/fmicb.2021.764241
  • Huang, X., Weisener, C. G., Ni, J., He, B., Xie, D., & Li, Z. (2020). Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresource Technology, 312, 123597. https://doi.org/10.1016/j.biortech.2020.123597
  • Hu, H. W., & He, J. Z. (2017). Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12), 2709–2717. https://doi.org/10.1007/s11368-017-1851-9
  • Hu, J. A., Yang, X. Y., Deng, X. Y., Liu, X. M., Yu, J. X., Chi, R., & Xiao, C. Q. (2022). Isolation and nitrogen removal efficiency of the heterotrophic nitrifying-aerobic denitrifying strain K17 from a rare earth element leaching site. Frontiers in Microbiology, 13, 905409. https://doi.org/10.3389/fmicb.2022.905409
  • Jia, F. X., Peng, Y. Z., Li, J. W., Li, X. Y., & Yao, H. (2021). Metagenomic prediction analysis of microbial aggregation in anammox-dominated community. Water Environment Research: A Research Publication of the Water Environment Federation, 93(11), 2549–2558. https://doi.org/10.1002/wer.1529
  • Jin, P., Chen, Y., Yao, R., Zheng, Z., & Du, Q. (2019). New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. Journal of Hazardous Materials, 371, 295–303. https://doi.org/10.1016/j.jhazmat.2019.03.023
  • Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J. L., Schmid, M. C., Sinninghe Damsté, J., Jetten, M. S., & Strous, M. (2008). Candidatus ‘Brocadia fulgida’: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63(1), 46–55. https://doi.org/10.1111/j.1574-6941.2007.00408.x
  • Koch, H., van Kessel, M. A. H. J., & Lücker, S. (2019). Complete nitrification: Insights into the ecophysiology of comammox Nitrospira. Applied Microbiology and Biotechnology, 103(1), 177–189. https://doi.org/10.1007/s00253-018-9486-3
  • Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. M. (2014). Full-scale partial nitritation/anammox experiences - An application survey. Water Research, 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032
  • Lei, X., Jia, Y., Chen, Y., & Hu, Y. (2019). Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81. Bioresource Technology, 272, 442–450. https://doi.org/10.1016/j.biortech.2018.10.060
  • Liang, Y. H., Li, D., Zeng, H. P., Zhang, C. D., & Zhang, J. (2015). Rapid start-up and microbial characteristics of partial nitrification granular sludge treating domestic sewage at room temperature. Bioresource Technology, 196, 741–745. https://doi.org/10.1016/j.biortech.2015.08.003
  • Li, Y., Li, C. X., Lin, W., Wang, S. S., Zhang, W. X., Jiang, Y. M., Zhang, Y., Zhang, H., & Han, Y. H. (2021). Full evaluation of assimilatory and dissimilatory nitrate reduction in a new denitrifying bacterium Leclercia adecarboxylata strain AS3-1: Characterization and functional gene analysis. Environmental Technology & Innovation, 23, 101731. https://doi.org/10.1016/j.eti.2021.101731
  • Li, X., Li, Y. Y., Lv, D. Q., Li, Y., & Wu, J. S. (2020). Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. The Science of the Total Environment, 709, 136235. https://doi.org/10.1016/j.scitotenv.2019.136235
  • Liu, S., Liu, Q., Wu, H., Jiang, W., Kahaer, A., Tang, Q., Hu, Z., Hong, C., & Liu, D. (2022). Integrative chemical and omics analysis of the ammonia nitrogen removal characteristics and mechanism of a novel oligotrophic heterotrophic nitrification-aerobic denitrification bacterium. The Science of the Total Environment, 852, 158519. https://doi.org/10.1016/j.scitotenv.2022.158519
  • Liu, H. Y., Tong, S., Chen, N., Liu, Y., Feng, C. P., & Hua, Q. L. (2015). Effect of electro-stimulation on activity of heterotrophic denitrifying bacteria and denitrification performance. Bioresource Technology, 196, 123–128. https://doi.org/10.1016/j.biortech.2015.07.076
  • Li, Y., Wang, Y., Fu, L., Gao, Y., Zhao, H., & Zhou, W. (2017). Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5. Bioresource Technology, 230, 103–111. https://doi.org/10.1016/j.biortech.2017.01.049
  • Li, C., Yang, J., Wang, X., Wang, E., Li, B., He, R., & Yuan, H. (2015). Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 182, 18–25. https://doi.org/10.1016/j.biortech.2015.01.100
  • Maddela, N. R., Gan, Z., Meng, Y., Fan, F., & Meng, F. (2022). Occurrence and roles of comammox bacteria in water and wastewater treatment systems: A critical review. Engineering, 17, 196–206. https://doi.org/10.1016/j.eng.2021.07.024
  • Ma, S., Huang, S., Tian, Y., & Lu, X. (2022). Heterotrophic ammonium assimilation: An important driving force for aerobic denitrification of Rhodococcus erythropolis strain Y10. Chemosphere, 291(Pt 3), 132910. https://doi.org/10.1016/j.chemosphere.2021.132910
  • Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., & Stahl, D. A. (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976–979. https://doi.org/10.1038/nature08465
  • Mauffrey, F., Martineau, C., & Villemur, R. (2015). Importance of the two dissimilatory (Nar) nitrate reductases in the growth and nitrate reduction of the methylotrophic marine bacterium methylophaga nitratireducenticrescens JAM1. Frontiers in Microbiology, 6, 1475. https://doi.org/10.3389/fmicb.2015.01475
  • Ma, B., Wang, S., Cao, S., Miao, Y., Jia, F., Du, R., & Peng, Y. (2015). Biological nitrogen removal from sewage via anammox: Recent advances. Bioresource Technology, 200, 981–990. https://doi.org/10.1016/j.biortech.2015.10.074
  • Mohseni-Bandpi, A., Elliott, D. J., & Zazouli, M. A. (2013). Biological nitrate removal processes from drinking water supply-a review. Journal of Environmental Health Science & Engineering, 11(1), 35. https://doi.org/10.1186/2052-336X-11-35
  • Monteiro, M., Séneca, J., & Magalhães, C. (2014). The history of aerobic ammonia oxidizers: From the first discoveries to today. Journal of Microbiology (Seoul, Korea), 52(7), 537–547. https://doi.org/10.1007/s12275-014-4114-0
  • Ngugi, D. K., Blom, J., Stepanauskas, R., & Stingl, U. (2016). Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. The ISME Journal, 10(6), 1383–1399. https://doi.org/10.1038/ismej.2015.214
  • Oshiki, M., Satoh, H., & Okabe, S. (2016). Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environmental Microbiology, 18(9), 2784–2796. https://doi.org/10.1111/1462-2920.13134
  • Ouyang, L., Wang, K., Liu, X., Wong, M. H., Hu, Z., Chen, H., Yang, X., & Li, S. (2020). A study on the nitrogen removal efficacy of bacterium Acinetobacter tandoii MZ-5 from a contaminated river of Shenzhen, Guangdong Province, China. Bioresource Technology, 315, 123888. https://doi.org/10.1016/j.biortech.2020.123888
  • Padhi, S. K., Tripathy, S., Mohanty, S., & Maiti, N. K. (2017). Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine. Bioresource Technology, 232, 285–296. https://doi.org/10.1016/j.biortech.2017.02.049
  • Pal, R. R., Khardenavis, A. A., & Purohit, H. J. (2015). Identification and monitoring of nitrification and denitrification genes in Klebsiella pneumoniae EGD-HP19-C for its ability to perform heterotrophic nitrification and aerobic denitrification. Functional & Integrative Genomics, 15(1), 63–76. https://doi.org/10.1007/s10142-014-0406-z
  • Palomo, A., Pedersen, A. G., Fowler, S. J., Dechesne, A., Sicheritz-Pontén, T., & Smets, B. F. (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 12(7), 1779–1793. https://doi.org/10.1038/s41396-018-0083-3
  • Philippot, L., Andert, J., Jones, C. M., Bru, D., & Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 17(3), 1497–1504. https://doi.org/10.1111/j.1365-2486.2010.02334.x
  • Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C. W., van Kessel, M. A. H. J., Daebeler, A., Steinberger, M., Jetten, M. S. M., Lücker, S., Wagner, M., & Daims, H. (2017). AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox nitrospira in the environment. Frontiers in Microbiology, 8, 1508. https://doi.org/10.3389/fmicb.2017.01508
  • Qiao, Z., Sun, R., Wu, Y., Hu, S., Liu, X., Chan, J., & Mi, X. (2020). Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. Environmental Research, 191, 110069. https://doi.org/10.1016/j.envres.2020.110069
  • Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43(43), 107570. https://doi.org/10.1016/j.biotechadv.2020.107570
  • Ren, Y., Hao Ngo, H., Guo, W., Wang, D., Peng, L., Ni, B. J., Wei, W., & Liu, Y. (2020). New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresource Technology, 297, 122491. https://doi.org/10.1016/j.biortech.2019.122491
  • Ren, Z. Q., Wang, H., Zhang, L. G., Du, X. N., Huang, B. C., & Jin, R. C. (2022). A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. Bioresource Technology, 363, 127896. https://doi.org/10.1016/j.biortech.2022.127896
  • Ren, Y. X., Yang, L., & Liang, X. (2014). The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171, 1–9. https://doi.org/10.1016/j.biortech.2014.08.058
  • Rezvani, F., Sarrafzadeh, M. H., Ebrahimi, S., & Oh, H. M. (2019). Nitrate removal from drinking water with a focus on biological methods: A review. Environmental Science and Pollution Research International, 26(2), 1124–1141. https://doi.org/10.1007/s11356-017-9185-0
  • Robertson, L. A., van Niel, E. W. J., Torremans, R. A. M., & Kuenen, J. G. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54(11), 2812–2818. https://doi.org/10.1128/aem.54.11.2812-2818.1988
  • Rout, P. R., Bhunia, P., & Dash, R. R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244(Pt 1), 484–495. https://doi.org/10.1016/j.biortech.2017.07.186
  • Roy, D., McEvoy, J., Blonigen, M., Amundson, M., & Khan, E. (2017). Seasonal variation and ex-situ nitrification activity of ammonia oxidizing archaea in biofilm based wastewater treatment processes. Bioresource Technology, 244(Pt 1), 850–859. https://doi.org/10.1016/j.biortech.2017.08.060
  • Russell, J. A., León-Zayas, R., Wrighton, K., & Biddle, J. F. (2016). Deep subsurface life from north pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria. Frontiers in Microbiology, 7, 678. https://doi.org/10.3389/fmicb.2016.00678
  • Sharif, S. M., Kowal, P., Lu, X., Xie, L., & Drewnowski, J. (2021). Development of strategies for AOB and NOB competition supported by mathematical modeling in terms of successful deammonification implementation for energy-efficient WWTPs. Processes, 9(3), 562. https://doi.org/10.3390/pr9030562
  • Silva, L. C. F., Lima, H. S., Sartoratto, A., Sousa, M., Torres, A. P. R., Souza, R., de Paula, S. O., Oliveira, V., & Silva, C. (2018). Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system. International Biodeterioration & Biodegradation, 130, 1–7. https://doi.org/10.1016/j.ibiod.2018.03.009
  • Soliman, M., & Eldyasti, A. (2018). Ammonia-oxidizing bacteria (AOB): Opportunities and applications—a review. Reviews in Environmental Science and Bio/Technology, 17(2), 285–321. https://doi.org/10.1007/s11157-018-9463-4
  • Song, T., Zhang, X., Li, J., Wu, X., Feng, H., & Dong, W. (2021). A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). The Science of the Total Environment, 801, 149319. https://doi.org/10.1016/j.scitotenv.2021.149319
  • Su, J., Zhang, H., Xue, L., & Zhang, Y. (2020). Characterization of simultaneous aerobic denitrification and dephosphorization StrainCupriavidussp. H29 and its application on cadmium-removing. Geomicrobiology Journal, 37(5), 426–436. https://doi.org/10.1080/01490451.2019.1711466
  • Sui, Q., Wang, Y., Wang, H., Yue, W., Chen, Y., Yu, D., Chen, M., & Wei, Y. (2020). Roles of hydroxylamine and hydrazine in the in-situ recovery of one-stage partial nitritation-anammox process: Characteristics and mechanisms. The Science of the Total Environment, 707, 135648. https://doi.org/10.1016/j.scitotenv.2019.135648
  • Sun, Y., Feng, L., Li, A., Zhang, X., Yang, J., & Ma, F. (2017). Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13. Bioresource Technology, 234, 264–272. https://doi.org/10.1016/j.biortech.2017.03.053
  • Sun, Y., Li, J., Huang, T., & Guan, X. (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100, 277–295. https://doi.org/10.1016/j.watres.2016.05.031
  • Taylor, S. M., He, Y., Zhao, B., & Huang, J. (2009). Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. Journal of Environmental Sciences (China), 21(10), 1336–1341. https://doi.org/10.1016/s1001-0742(08)62423-7
  • Thakur, I. S., & Medhi, K. (2019). Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. Bioresource Technology, 282, 502–513. https://doi.org/10.1016/j.biortech.2019.03.069
  • Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7(12), 1985–1995. https://doi.org/10.1111/j.1462-2920.2005.00906.x
  • Wang, C., He, T., Zhang, M., Zheng, C., Yang, L., & Yang, L. (2024). Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. Environmental Pollution (Barking, Essex: 1987), 345, 123480. https://doi.org/10.1016/j.envpol.2024.123480
  • Wang, H., Li, J., Wang, B., & Chen, G. (2020). Deciphering pollutants removal mechanisms and genetic responses to ampicillin stress in simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) process treating seawater-based wastewater. Bioresource Technology, 315, 123827. https://doi.org/10.1016/j.biortech.2020.123827
  • Wang, D. P., Zheng, Q., Huang, K. L., Springael, D., & Zhang, X. X. (2020). Metagenomic and metatranscriptomic insights into the complex nitrogen metabolic pathways in a single-stage bioreactor coupling partial denitrification with anammox. Chemical Engineering Journal, 398, 125653. https://doi.org/10.1016/j.cej.2020.125653
  • Weigelhofer, G., & Hein, T. (2015). Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water. Environmental Science and Pollution Research International, 22(17), 13534–13545. https://doi.org/10.1007/s11356-015-4634-0
  • Wu, P., Chen, J. J., Garlapati, V. K., Zhang, X. X., Jenario, F. W. V., Li, X., Liu, W. R., Chen, C. J., Aminabhavi, T. M., & Zhang, X. N. (2022). Novel insights into Anammox-based processes: A critical review. Chemical Engineering Journal, 444, 136534. https://doi.org/10.1016/j.cej.2022.136534
  • Wu, Q., He, T., Chen, M., & Zhang, M. (2022). Nitrogen removal characterization and functional enzymes identification of a hypothermia bacterium Pseudomonas fragi EH-H1. Bioresource Technology, 365, 128156. https://doi.org/10.1016/j.biortech.2022.128156
  • Xia, L., Li, X., Fan, W., & Wang, J. (2020). Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology, 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749
  • Xie, E., Ding, A., Zheng, L., Lu, C., Wang, J., Huang, B., & Xiu, H. (2016). Seasonal variation in populations of nitrogen-transforming bacteria and correlation with nitrogen removal in a full-scale horizontal flow constructed wetland treating polluted river water. Geomicrobiology Journal, 33(3-4), 338–346. https://doi.org/10.1080/01490451.2015.1052115
  • Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., & Zhang, Y. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials, 321, 390–407. https://doi.org/10.1016/j.jhazmat.2016.09.028
  • Xu, N., Liao, M., Liang, Y., Guo, J., Zhang, Y., Xie, X., Fan, Q., & Zhu, Y. (2021). Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium (Bacillus thuringiensis strain WXN-23). Environmental Research, 195, 110797. https://doi.org/10.1016/j.envres.2021.110797
  • Yang, J. R., Wang, Y., Chen, H., & Lyu, Y. K. (2019). Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresource Technology, 274, 56–64. https://doi.org/10.1016/j.biortech.2018.10.052
  • Yao, Z. B., Yang, L., Wang, F., Tian, L. Q., Song, N., & Jiang, H. L. (2020). Enhanced nitrate removal from surface water in a denitrifying woodchip bioreactor with a heterotrophic nitrifying and aerobic denitrifying fungus. Bioresource Technology, 303, 122948. https://doi.org/10.1016/j.biortech.2020.122948
  • Yin, Z. X., Bi, X. J., & Xu, C. L. (2018). Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea (Vancouver, B.C.), 2018, 8429145. https://doi.org/10.1155/2018/8429145
  • Yu, S., Miao, C., Song, H., Huang, Y., Chen, W., & He, X. (2019). Efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water. International Journal of Phytoremediation, 21(7), 643–651. https://doi.org/10.1080/15226514.2018.1556582
  • Yun, L., Yu, Z., Li, Y., Luo, P., Jiang, X., Tian, Y., & Ding, X. (2019). Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture, 500, 477–484. https://doi.org/10.1016/j.aquaculture.2018.10.054
  • Zekker, I., Kroon, K., Rikmann, E., Tenno, T., Tomingas, M., Vabamäe, P., Vlaeminck, S. E., & Tenno, T. (2012). Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor. Biodegradation, 23(5), 739–749. https://doi.org/10.1007/s10532-012-9549-6
  • Zhang, Y., Dai, S., Huang, X., Zhao, Y., Zhao, J., Cheng, Y., Cai, Z., & Zhang, J. (2020). pH-induced changes in fungal abundance and composition affects soil heterotrophic nitrification after 30 days of artificial pH manipulation. Geoderma, 366, 114255. https://doi.org/10.1016/j.geoderma.2020.114255
  • Zhang, M., He, T., Chen, M., & Wu, Q. (2022). Ammonium and hydroxylamine can be preferentially removed during simultaneous nitrification and denitrification by Pseudomonas taiwanensis EN-F2. Bioresource Technology, 350, 126912. https://doi.org/10.1016/j.biortech.2022.126912
  • Zhang, M., He, T., Wu, Q., & Chen, M. (2023). Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1. Frontiers in Microbiology, 14, 1130512. https://doi.org/10.3389/fmicb.2023.1130512
  • Zhang, Q. L., Liu, Y., Ai, G. M., Miao, L. L., Zheng, H. Y., & Liu, Z. P. (2012). The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Technology, 108, 35–44. https://doi.org/10.1016/j.biortech.2011.12.139
  • Zhang, M., Li, A., Yao, Q., Wu, Q., & Zhu, H. (2020). Nitrogen removal characteristics of a versatile heterotrophic nitrifying-aerobic denitrifying bacterium, Pseudomonas bauzanensis DN13-1, isolated from deep-sea sediment. Bioresource Technology, 305, 122626. https://doi.org/10.1016/j.biortech.2019.122626
  • Zhang, L., & Okabe, S. (2020). Ecological niche differentiation among anammox bacteria. Water Research, 171(171), 115468. https://doi.org/10.1016/j.watres.2020.115468
  • Zhang, M., Wang, S., Ji, B., & Liu, Y. (2019). Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. The Science of the Total Environment, 692(692), 393–401. https://doi.org/10.1016/j.scitotenv.2019.07.293
  • Zhang, X., Xia, Y., Wang, C., Li, J., Wu, P., Ma, L., Wang, Y., Wang, Y., Da, F., Liu, W., & Xu, L. (2020). Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. Bioresource Technology, 318, 124274. https://doi.org/10.1016/j.biortech.2020.124274
  • Zhang, Z., Zhang, Y., & Chen, Y. (2020). Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresource Technology, 298, 122444. https://doi.org/10.1016/j.biortech.2019.122444
  • Zhang, X. Y., Zheng, S. K., Sun, J. A., & Xiao, X. Z. (2017). Elucidation of microbial nitrogen-transformation mechanisms in activated sludge by comprehensive evaluation of nitrogen-transformation activity. Bioresource Technology, 234, 15–22. https://doi.org/10.1016/j.biortech.2017.03.022
  • Zhang, Q., Zhu, Y., Yuan, C., Zhang, C., Cui, M., & Zhao, T. (2022). Nitrogen removal and mechanism of an extremely high-ammonia tolerant heterotrophic nitrification-aerobic denitrification bacterium Alcaligenes faecalis TF-1. Bioresource Technology, 361, 127643. https://doi.org/10.1016/j.biortech.2022.127643
  • Zhao, B., He, Y. L., Hughes, J., & Zhang, X. F. (2010). Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresource Technology, 101(14), 5194–5200. https://doi.org/10.1016/j.biortech.2010.02.043
  • Zhao, Z., Huang, G., He, S., Zhou, N., Wang, M., Dang, C., Wang, J., & Zheng, M. (2019). Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. The Science of the Total Environment, 691, 146–155. https://doi.org/10.1016/j.scitotenv.2019.07.131
  • Zhao, W., Peng, Y., Wang, M., Huang, Y., & Li, X. (2019). Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater. Bioresource Technology, 294, 122161. https://doi.org/10.1016/j.biortech.2019.122161
  • Zhao, B. H., Yang, H. S., Li, Y. Q., Zhang, J., Zhang, Y. Q., & Zhang, B. L. (2024). Achieving partial nitrification in a continuous-flow bioreactor by free ammonia treatment combined with low dissolved oxygen. Biochemical Engineering Journal, 203, 109194. https://doi.org/10.1016/j.bej.2023.109194
  • Zheng, S., Zheng, X., Guo, M., & Li, S. (2023). Metabolic inhibitor-free assessment of the heterotrophic ammonia-oxidizing activity in activated sludge. The Science of the Total Environment, 901, 165907. https://doi.org/10.1016/j.scitotenv.2023.165907
  • Zhu, G., Wang, X., Wang, S., Yu, L., Armanbek, G., Yu, J., Jiang, L., Yuan, D., Guo, Z., Zhang, H., Zheng, L., Schwark, L., Jetten, M. S. M., Yadav, A. K., & Zhu, Y. G. (2022). Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox). The Science of the Total Environment, 829, 154590. https://doi.org/10.1016/j.scitotenv.2022.154590
  • Zou, G., Papirio, S., Lakaniemi, A. M., Ahoranta, S. H., & Puhakka, J. A. (2016). High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal, 284, 1287–1294. https://doi.org/10.1016/j.cej.2015.09.074

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.