649
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Long-term management of PFAS contaminated water using constructed floating wetlands: Opportunities, limitations, and implementation considerations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Acharya, B. S., & Kharel, G. (2020). Acid mine drainage from coal mining in the United States – An overview. Journal of Hydrology, 588, 125061. https://doi.org/10.1016/j.jhydrol.2020.125061
  • Afzal, M., Rehman, K., Shabir, G., Tahseen, R., Ijaz, A., Hashmat, A. J., & Brix, H. (2019). Large-scale remediation of oil-contaminated water using floating treatment wetlands. Npj Clean Water, 2(1), 3. https://doi.org/10.1038/s41545-018-0025-7
  • Al-Baldawi, I. A., Mohammed, A. A., Mutar, Z. H., Abdullah, S. R. S., Jasim, S. S., Almansoory, A. F., & Ismail, N. I. (2021). Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: Source, impacts, treatment, mechanisms, fate, and SWOT analysis. Journal of Cleaner Production, 319, 128584. https://doi.org/10.1016/j.jclepro.2021.128584
  • Arcadis U.S. Inc. (2022). Summary of characterization activities for Pond 1 at Ellsworth air force base (EAFB). U.S. Army Corps of Engineers.
  • Armitage, J. M., Arnot, J. A., & Wania, F. (2012). Potential role of phospholipids in determining the internal tissue distribution of perfluoroalkyl acids in biota. Environmental Science & Technology, 46(22), 12285–12286. https://doi.org/10.1021/es304430r
  • Arslan, M., & Gamal El-Din, M. (2021). Removal of per- and poly-fluoroalkyl substances (PFASs) by wetlands: Prospects on plants, microbes and the interplay. Science of the Total Environment, 800, 149570. https://doi.org/10.1016/j.scitotenv.2021.149570
  • Awad, J., Brunetti, G., Juhasz, A., Navarro, D., Vanderzalm, J., Walker, C., & Beecham, S. (2022). Investigating phytoremediation coupled with sorption for remediation of PFAS-contaminated surface water. International Cleanup - 9th International Contaminated Site Remediation Conference, Adelaide, South Australia (pp. 345–346).
  • Awad, J., Brunetti, G., Juhasz, A., Williams, M., Navarro, D., Drigo, B., Bougoure, J., Vanderzalm, J., & Beecham, S. (2022). Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. Journal of Hazardous Materials, 429, 128326. https://doi.org/10.1016/j.jhazmat.2022.128326
  • Awad, J., Hewa, G., Myers, B. R., Walker, C., Lucke, T., Akyol, B., & Duan, X. (2022). Investigation of the potential of native wetland plants for removal of nutrients from synthetic stormwater and domestic wastewater. Ecological Engineering, 179, 106642. https://doi.org/10.1016/j.ecoleng.2022.106642
  • Ayres, J., Awad, J., Walker, C., Page, D., van Leeuwen, J., & Beecham, S. (2022). Constructed floating wetlands for the treatment of surface waters and industrial wastewaters. In N. Pachova, P. Velasco, A. Torrens, V. Jegatheesan (Eds.), Regional perspectives of nature-based solutions for water: Benefits and challenges (pp. 35–66). Springer International Publishing. https://doi.org/10.1007/978-3-031-18412-3_3
  • Banwell, C., Housen, T., Smurthwaite, K., Trevenar, S., Walker, L., Todd, K., Rosas, M., & Kirk, M. (2021). Health and social concerns about living in three communities affected by per-and polyfluoroalkyl substances (PFAS): A qualitative study in Australia. PLOS One, 16(1), e0245141. https://doi.org/10.1371/journal.pone.0245141
  • Blaine, A. C., Rich, C. D., Sedlacko, E. M., Hyland, K. C., Stushnoff, C., Dickenson, E. R. V., & Higgins, C. P. (2014). Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environmental Science & Technology, 48(24), 14361–14368. https://doi.org/10.1021/es504150h
  • Bolan, N., Sarkar, B., Yan, Y., Li, Q., Wijesekara, H., Kannan, K., Tsang, D. C. W., Schauerte, M., Bosch, J., Noll, H., Ok, Y. S., Scheckel, K., Kumpiene, J., Gobindlal, K., Kah, M., Sperry, J., Kirkham, M. B., Wang, H., Tsang, Y. F., Hou, D., & Rinklebe, J. (2021). Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade? Journal of Hazardous Materials, 401, 123892. https://doi.org/10.1016/j.jhazmat.2020.123892
  • Borne, K. E., Fassman-Beck, E. A., & Tanner, C. C. (2014). Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Research, 48, 430–442. https://doi.org/10.1016/j.watres.2013.09.056
  • Brennan, N. M., Evans, A. T., Fritz, M. K., Peak, S. A., & von Holst, H. E. (2021). Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review. International Journal of Environmental Research and Public Health, 18(20), 10900. https://doi.org/10.3390/ijerph182010900
  • Buck, R. C., Korzeniowski, S. H., Laganis, E., & Adamsky, F. (2021). Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integrated Environmental Assessment and Management, 17(5), 1045–1055. https://doi.org/10.1002/ieam.4450
  • Calloway, E. E., Chiappone, A. L., Schmitt, H. J., Sullivan, D., Gerhardstein, B., Tucker, P. G., Rayman, J., & Yaroch, A. L. (2020). Exploring community psychosocial stress related to per- and poly-fluoroalkyl substances (PFAS) contamination: Lessons learned from a qualitative study. International Journal of Environmental Research and Public Health, 17(23), 8706. https://doi.org/10.3390/ijerph17238706
  • Cao, X., Zhang, C., Zhang, S., Sakamaki, T., Wang, H., & Li, X.-N. (2023). Simultaneous removal of sediment and water contaminants in a microbial electrochemical system with embedded active electrode by in-situ utilization of electrons. Journal of Hazardous Materials, 443(Pt A), 130172. https://doi.org/10.1016/j.jhazmat.2022.130172
  • Casson, R., & Chiang, S.-Y. (2018). Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs. Remediation Journal, 28(2), 71–87. https://doi.org/10.1002/rem.21551
  • Chen, Y., Zhang, H., Liu, Y., Bowden, J. A., Tolaymat, T. M., Townsend, T. G., & Solo-Gabriele, H. M. (2023). Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere, 318, 137903. https://doi.org/10.1016/j.chemosphere.2023.137903
  • Chen, Z., Cuervo, D. P., Müller, J. A., Wiessner, A., Köser, H., Vymazal, J., Kästner, M., & Kuschk, P. (2016). Hydroponic root mats for wastewater treatment—A review. Environmental Science and Pollution Research, 23(16), 15911–15928. https://doi.org/10.1007/s11356-016-6801-3
  • Chojnacka, K., Moustakas, K., & Mikulewicz, M. (2023). The combined rhizoremediation by a triad: Plant-microorganism-functional materials. Environmental Science and Pollution Research, 30(39), 90500–90521. https://doi.org/10.1007/s11356-023-28755-8
  • Christenhusz, M. J., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201. https://doi.org/10.11646/phytotaxa.261.3.1
  • Colares, G. S., Dell’Osbel, N., Wiesel, P. G., Oliveira, G. A., Lemos, P. H. Z., da Silva, F. P., Lutterbeck, C. A., Kist, L. T., & Machado, Ê. L. (2020). Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment, 714, 136776. https://doi.org/10.1016/j.scitotenv.2020.136776
  • Dalahmeh, S., Tirgani, S., Komakech, A. J., Niwagaba, C. B., & Ahrens, L. (2018). Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Science of the Total Environment, 631-632, 660–667. https://doi.org/10.1016/j.scitotenv.2018.03.024
  • Daraz, U., Li, Y., Ahmad, I., Iqbal, R., & Ditta, A. (2023). Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere, 311(Pt 2), 137089. https://doi.org/10.1016/j.chemosphere.2022.137089
  • De Mandal, S., Laskar, F., Panda, A. K., & Mishra, R. (2020). Chapter 12 – Microbial diversity and functional potential in wetland ecosystems. In S. De Mandal, P. Bhatt (Eds.), Recent advancements in microbial diversity (pp. 289–314). Academic Press. https://doi.org/10.1016/B978-0-12-821265-3.00012-8
  • Department of Defence. (2019). RAAF Base Edinburgh Environmental Investigation of PFAS.
  • Felizeter, S., McLachlan, M. S., & De Voogt, P. (2014). Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. Journal of Agricultural and Food Chemistry, 62(15), 3334–3342. https://doi.org/10.1021/jf500674j
  • Fu, J., Gao, B., Xu, H., Hao, S., Ren, J., Wu, J., & Sun, Y. (2023). Effects of biofilms on the retention and transport of PFOA in saturated porous media. Journal of Hazardous Materials, 443(Pt B), 130392. https://doi.org/10.1016/j.jhazmat.2022.130392
  • García-Valcárcel, A. I., Molero, E., Escorial, M. C., Chueca, M. C., & Tadeo, J. L. (2014). Uptake of perfluorinated compounds by plants grown in nutrient solution. Science of the Total Environment, 472, 20–26. https://doi.org/10.1016/j.scitotenv.2013.10.054
  • Ghisi, R., Vamerali, T., & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, 326–341. https://doi.org/10.1016/j.envres.2018.10.023
  • Glüge, J., Scheringer, M., Cousins, I. T., Dewitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22(12), 2345–2373. https://doi.org/10.1039/D0EM00291G
  • Grgas, D., Petrina, A., Štefanac, T., Bešlo, D., & Landeka Dragičević, T. (2023). A review: Per- and polyfluoroalkyl substances-biological degradation. Toxics, 11(5), 446. https://doi.org/10.3390/toxics11050446
  • Griffin, E. K., Aristizabal-Henao, J., Timshina, A., Ditz, H. L., Camacho, C. G., da Silva, B. F., Coker, E. S., Deliz Quiñones, K. Y., Aufmuth, J., & Bowden, J. A. (2022). Assessment of per- and polyfluoroalkyl substances (PFAS) in the Indian River Lagoon and Atlantic coast of Brevard County, FL, reveals distinct spatial clusters. Chemosphere, 301, 134478. https://doi.org/10.1016/j.chemosphere.2022.134478
  • Gupta, S., & Pathak, B. (2020). Chapter 4. Bioremediation of polycyclic aromatic hydrocarbons (PAHs): An overview. In M. H. Fulekar & B. Pathak (Eds.), Bioremediation Technology (1st ed., 63–90). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429296031-4/bioremediation-polycyclic-aromatic-hydrocarbons-pahs-overview-shalini-gupta-bhawana-pathak
  • Hammill, E., Pendleton, M., Brahney, J., Kettenring, K. M., & Atwood, T. B. (2022). Metal concentrations in wetland plant tissues influences transfer to terrestrial food webs. Ecotoxicology, 31(5), 836–845. https://doi.org/10.1007/s10646-022-02550-6
  • He, Q., Yan, Z., Qian, S., Xiong, T., Grieger, K. D., Wang, X., Liu, C., & Zhi, Y. (2023). Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. Journal of Hazardous Materials, 454, 131492. https://doi.org/10.1016/j.jhazmat.2023.131492
  • HEPA. (2020). PFAS national environmental management plan: Version 2.0. The National Chemicals Working Group of the Heads of EPAs Australia and New Zealand. https://www.dcceew.gov.au/environment/protection/publications/pfas-nemp-2
  • HEPA. (2022). Draft PFAS National Environmental Management Plan: Version 3.0. The National Chemicals Working Group of the Heads of EPAs Australia and New Zealand. https://consult.dcceew.gov.au/nemp-pfas
  • Huth, I., Walker, C., Kulkarni, R., & Lucke, T. (2021). Using constructed floating wetlands to remove nutrients from a waste stabilization pond. Water, 13(13), 1746. https://doi.org/10.3390/w13131746
  • Hwang, J. I., Li, Z., Andreacchio, N., Ordonez Hinz, F., & Wilson, P. C. (2020). Potential use of floating treatment wetlands established with Canna flaccida for removing organic contaminants from surface water. International Journal of Phytoremediation, 22(12), 1304–1312. https://doi.org/10.1080/15226514.2020.1768511
  • Hwang, J.-I., Hinz, F. O., Albano, J. P., & Wilson, P. C. (2021). Enhanced dissipation of trace level organic contaminants by floating treatment wetlands established with two macrophyte species: A mesocosm study. Chemosphere, 267, 129159. https://doi.org/10.1016/j.chemosphere.2020.129159
  • ITRC. (2022). PFAS technical and regulatory guidance document and fact sheets PFAS-1. ITRC.
  • Ji, B., & Zhao, Y. (2024). Interactions between biofilms and PFASs in aquatic ecosystems: Literature exploration. Science of the Total Environment, 906, 167469. https://doi.org/10.1016/j.scitotenv.2023.167469
  • Ji, B., Kang, P., Wei, T., & Zhao, Y. (2020). Challenges of aqueous per- and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies. Chemosphere, 250, 126316. https://doi.org/10.1016/j.chemosphere.2020.126316
  • Ji, B., Zhao, Y., Yang, Y., Li, Q., Man, Y., Dai, Y., Fu, J., Wei, T., Tai, Y., & Zhang, X. (2023). Curbing per- and polyfluoroalkyl substances (PFASs): First investigation in a constructed wetland-microbial fuel cell system. Water Research, 230, 119530. https://doi.org/10.1016/j.watres.2022.119530
  • Kabiri, S., Navarro, D. A., Hamad, S. A., Grimison, C., Higgins, C. P., Mueller, J. F., Kookana, R. S., & McLaughlin, M. J. (2023). Physical and chemical properties of carbon-based sorbents that affect the removal of per- and polyfluoroalkyl substances from solution and soil. Science of the Total Environment, 875, 162653. https://doi.org/10.1016/j.scitotenv.2023.162653
  • Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317–1332. https://doi.org/10.1016/j.chemosphere.2012.09.045
  • Krippner, J., Falk, S., Brunn, H., Georgii, S., Schubert, S., & Stahl, T. (2015). Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Journal of Agricultural and Food Chemistry, 63(14), 3646–3653. https://doi.org/10.1021/acs.jafc.5b00012
  • Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of the Total Environment, 809, 151003. https://doi.org/10.1016/j.scitotenv.2021.151003
  • LaFond, J. A., Hatzinger, P. B., Guelfo, J. L., Millerick, K., & Jackson, W. A. (2023). Bacterial transformation of per- and poly-fluoroalkyl substances: A review for the field of bioremediation. Environmental Science: Advances, 2(8), 1019–1041. https://doi.org/10.1039/D3VA00031A
  • Lan, Z., Zhou, M., Yao, Y., & Sun, H. (2018). Plant uptake and translocation of perfluoroalkyl acids in a wheat–soil system. Environmental Science and Pollution Research, 25(31), 30907–30916. https://doi.org/10.1007/s11356-018-3070-3
  • Lee, Y.-C., Wang, P.-Y., Lo, S.-L., & Huang, C. P. (2017). Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 173, 280–285. https://doi.org/10.1016/j.seppur.2016.09.012
  • Lei, X., Lian, Q., Zhang, X., Karsili, T. K., Holmes, W., Chen, Y., Zappi, M. E., & Gang, D. D. (2023). A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. Environmental Pollution, 321, 121138. https://doi.org/10.1016/j.envpol.2023.121138
  • Lenka, S. P., Kah, M., & Padhye, L. P. (2021). A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 199, 117187. https://doi.org/10.1016/j.watres.2021.117187
  • Lewis, A. J., Yun, X., Spooner, D. E., Kurz, M. J., McKenzie, E. R., & Sales, C. M. (2022). Exposure pathways and bioaccumulation of per- and polyfluoroalkyl substances in freshwater aquatic ecosystems: Key considerations. Science of the Total Environment, 822, 153561. https://doi.org/10.1016/j.scitotenv.2022.153561
  • Li, H., Tian, Y., Qu, Y., Qiu, Y., Liu, J., & Feng, Y. (2017). A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration. Scientific Reports, 7(1), 39802. https://doi.org/10.1038/srep39802
  • Li, J., Sun, J., & Li, P. (2022). Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environment International, 158, 106891. https://doi.org/10.1016/j.envint.2021.106891
  • Li, X-Q., Hua, Z-L., Wu, J-y., & Gu, L. (2021). Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community. Water Research, 197, 117080. https://doi.org/10.1016/j.watres.2021.117080
  • Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2021). The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of the Total Environment, 768, 144582. https://doi.org/10.1016/j.scitotenv.2020.144582
  • Lin, Q., Zhou, C., Chen, L., Li, Y., Huang, X., Wang, S., Qiu, R., & Tang, C. (2020). Accumulation and associated phytotoxicity of novel chlorinated polyfluorinated ether sulfonate in wheat seedlings. Chemosphere, 249, 126447. https://doi.org/10.1016/j.chemosphere.2020.126447
  • Liu, J., & Mejia Avendaño, S. (2013). Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environment International, 61, 98–114. https://doi.org/10.1016/j.envint.2013.08.022
  • Liu, J., Edwards, E., Van Hamme, J., Manefield, M., Higgins, C. P., Blotevogel, J., Liu, J., & Lee, L. S. (2023). Correspondence on “defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. Strain A6. Environmental Science & Technology, 57(48), 20440–20442. https://doi.org/10.1021/acs.est.3c06681
  • Liu, J., Van Hoomissen, D. J., Liu, T., Maizel, A., Huo, X., Fernández, S. R., Ren, C., Xiao, X., Fang, Y., Schaefer, C. E., Higgins, C. P., Vyas, S., & Strathmann, T. J. (2018). Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environmental Science & Technology Letters, 5(5), 289–294. https://doi.org/10.1021/acs.estlett.8b00122
  • Lucke, T., Walker, C., & Beecham, S. (2019). Experimental designs of field-based constructed floating wetland studies: A review. Science of the Total Environment, 660, 199–208. https://doi.org/10.1016/j.scitotenv.2019.01.018
  • Ma, H., Kang, Y., Li, M., Dong, J., Wang, Y., Xiao, J., & Guo, Z. (2023). Enhancement of perfluorooctanoic acid and perfluorooctane sulphonic acid removal in constructed wetland using iron mineral: Performance and mechanisms. Journal of Hazardous Materials, 447, 130819. https://doi.org/10.1016/j.jhazmat.2023.130819
  • MacDonald, D., Walker, C., Lucke, T., Flipp, R., Covey, K., & Shadforth, P. (2016). Floating wetland treatment systems in residential development: Assessing the benefits for residents, local authorities, and developers. Novatech 2016-9ème Conférence Internationale Sur Les Techniques et Stratégies Pour la Gestion Durable de lEau Dans la Ville/9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, GRAIE, Lyon, France.
  • Mayakaduwage, S., Ekanayake, A., Kurwadkar, S., Rajapaksha, A. U., & Vithanage, M. (2022). Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environmental Research, 212(Pt B), 113311. https://doi.org/10.1016/j.envres.2022.113311
  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375. https://doi.org/10.1016/j.envint.2011.06.003
  • Mejia-Avendaño, S., Zhi, Y., Yan, B., & Liu, J. (2020). Sorption of polyfluoroalkyl surfactants on surface soils: Effect of molecular structures, soil properties, and solution chemistry. Environmental Science & Technology, 54(3), 1513–1521. https://doi.org/10.1021/acs.est.9b04989
  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326. https://doi.org/10.1016/j.biortech.2014.01.095
  • Merino, N., Qu, Y., Deeb, R. A., Hawley, E. L., Hoffmann, M. R., & Mahendra, S. (2016). Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environmental Engineering Science, 33(9), 615–649. https://doi.org/10.1089/ees.2016.0233
  • Mishra, S., Tripathi, A., Tripathi, D. K., & Chauhan, D. K. (2016). Role of sedges (Cyperaceae) in wetlands, environmental cleaning and as food material. In M. M. Azooz & P. Ahmad (Eds.), Plant-environment interaction: Responses and approaches to mitigate stress (pp. 327–338). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119081005.ch18
  • Morrison, A. L., Strezov, V., Niven, R. K., Taylor, M. P., Wilson, S. P., Wang, J., Burns, D. J., & Murphy, P. J. C. (2023). Impact of salinity and temperature on removal of PFAS species from water by aeration in the absence of additional surfactants: A novel application of green chemistry using adsorptive bubble fractionation. Industrial & Engineering Chemistry Research, 62(13), 5635–5645. https://doi.org/10.1021/acs.iecr.3c00150
  • Navarro, D. A., Kabiri, S., Ho, J., Bowles, K. C., Davis, G., McLaughlin, M. J., & Kookana, R. S. (2023). Stabilisation of PFAS in soils: Long-term effectiveness of carbon-based soil amendments. Environmental Pollution, 323, 121249. https://doi.org/10.1016/j.envpol.2023.121249
  • Ng, C. A., & Hungerbühler, K. (2014). Bioaccumulation of perfluorinated alkyl acids: Observations and models. Environmental Science & Technology, 48(9), 4637–4648. https://doi.org/10.1021/es404008g
  • Ollivier, Q. R., Maher, D. T., Pitfield, C., & Macreadie, P. I. (2019). Punching above their weight: Large release of greenhouse gases from small agricultural dams. Global Change Biology, 25(2), 721–732. https://doi.org/10.1111/gcb.14477
  • Olsen, M., Moy, F. E., Mjelde, M., & Lydersen, E. (2018). An in situ experimental study of effects on submerged vegetation after activated carbon amendment of legacy contaminated sediments. Water, Air, & Soil Pollution, 229(8), 263. https://doi.org/10.1007/s11270-018-3918-7
  • Overton, O. C., Olson, L. H., Majumder, S. D., Shwiyyat, H., Foltz, M. E., & Nairn, R. W. (2023). Wetland removal mechanisms for emerging contaminants. Land, 12(2), 472. https://doi.org/10.3390/land12020472
  • Patra, D. K., Acharya, S., Pradhan, C., & Patra, H. K. (2021). Poaceae plants as potential phytoremediators of heavy metals and eco-restoration in contaminated mining sites. Environmental Technology & Innovation, 21, 101293. https://doi.org/10.1016/j.eti.2020.101293
  • Pi, N., Ng, J. Z., & Kelly, B. C. (2017). Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes. Water Research, 117, 167–174. https://doi.org/10.1016/j.watres.2017.04.003
  • Qi, X., Yin, H., Zhu, M., Shao, P., & Dang, Z. (2022). Understanding the role of biochar in affecting BDE-47 biodegradation by Pseudomonas plecoglossicida: An integrated analysis using chemical, biological, and metabolomic approaches. Water Research, 220, 118679. https://doi.org/10.1016/j.watres.2022.118679
  • Qian, S., Lu, H., Xiong, T., Zhi, Y., Munoz, G., Zhang, C., Li, Z., Liu, C., Li, W., Wang, X., & He, Q. (2023). Bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in ferns: Effect of PFAS molecular structure and plant root characteristics. Environmental Science & Technology, 57(11), 4443–4453. https://doi.org/10.1021/acs.est.2c06883
  • Qiao, W., Li, R., Tang, T., & Zuh, A. A. (2021). Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system. Frontiers of Environmental Science & Engineering, 15(2), 1–11. https://doi.org/10.1007/s11783-020-1312-3
  • Rabêlo, F. H. S., Vangronsveld, J., Baker, A. J. M., van der Ent, A., & Alleoni, L. R. F. (2021). Are grasses really useful for the phytoremediation of potentially toxic trace elements? A review. Frontiers in Plant Science, 12, 778275. https://doi.org/10.3389/fpls.2021.778275
  • Ravikumar, Y., Yun, J., Zhang, G., Zabed, H. M., & Qi, X. (2022). A review on constructed wetlands-based removal of pharmaceutical contaminants derived from non-point source pollution. Environmental Technology & Innovation, 26, 102504. https://doi.org/10.1016/j.eti.2022.102504
  • Rigotti, J. A., Postal Pasqualini, J., & Ribeiro Rodrigues, L. (2020). Nature-based solutions for managing the urban surface runoff: An application of a constructed floating wetland. Limnetica, 39(1), 441–454. https://doi.org/10.23818/limn.39.28
  • Ruiz-Urigüen, M., Shuai, W., Huang, S., & Jaffé, P. R. (2022). Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6. Chemosphere, 292, 133506. https://doi.org/10.1016/j.chemosphere.2021.133506
  • Saifur, S., & Gardner, C. M. (2021). Loading, transport, and treatment of emerging chemical and biological contaminants of concern in stormwater. Water Science and Technology, 83(12), 2863–2885. https://doi.org/10.2166/wst.2021.187
  • Schwab, A. (1998). Phytoremediation of soils contaminated with PAHs and other petroleum compounds, Beneficial effects of vegetation in contaminated soils workshop. Kansas State University.
  • Schwammberger, P. F., Lucke, T., Walker, C., & Trueman, S. J. (2019). Nutrient uptake by constructed floating wetland plants during the construction phase of an urban residential development. Science of the Total Environment, 677, 390–403. https://doi.org/10.1016/j.scitotenv.2019.04.341
  • Shahid, M. J., Arslan, M., Ali, S., Siddique, M., & Afzal, M. (2018). Floating wetlands: A sustainable tool for wastewater treatment. CLEAN – Soil, Air, Water, 46(10), 1800120. https://doi.org/10.1002/clen.201800120
  • Sharma, P. (2022). Role and significance of biofilm-forming microbes in phytoremediation -A review. Environmental Technology & Innovation, 25, 102182. https://doi.org/10.1016/j.eti.2021.102182
  • Sheth, R. U., Cabral, V., Chen, S. P., & Wang, H. H. (2016). Manipulating bacterial communities by in situ microbiome engineering. Trends in Genetics, 32(4), 189–200. https://doi.org/10.1016/j.tig.2016.01.005
  • Shi, Y., Chen, T., Shaw, P., & Wang, P.-Y. (2022). Manipulating bacterial biofilms using materiobiology and synthetic biology approaches. Frontiers in Microbiology, 13, 844997. https://doi.org/10.3389/fmicb.2022.844997
  • Shi, Y., Vestergren, R., Nost, T. H., Zhou, Z., & Cai, Y. (2018). Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in crucian carp. Environmental Science & Technology, 52(8), 4592–4600. https://doi.org/10.1021/acs.est.7b06128
  • Sima, M. W., & Jaffé, P. R. (2021). A critical review of modeling poly- and perfluoroalkyl substances (PFAS) in the soil-water environment. Science of the Total Environment, 757, 143793. https://doi.org/10.1016/j.scitotenv.2020.143793
  • Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476. https://doi.org/10.3389/fpls.2018.01476
  • Surriya, O., Sarah Saleem, S., Waqar, K., & Gul Kazi, A. (2015). Chapter 1 – Phytoremediation of soils: Prospects and challenges. In K. R. Hakeem, M. Sabir, M. Öztürk, A. R. Mermut (Eds.), Soil remediation and plants (pp. 1–36). Academic Press. https://doi.org/10.1016/B978-0-12-799937-1.00001-2
  • Syranidou, E., Christofilopoulos, S., & Kalogerakis, N. (2017). Juncus spp.—The helophyte for all (phyto)remediation purposes? New Biotechnology, 38(Pt B), 43–55. https://doi.org/10.1016/j.nbt.2016.12.005
  • Takavakoglou, V., Georgiadis, A., Pana, E., Georgiou, P. E., Karpouzos, D. K., & Plakas, K. V. (2021). Screening life cycle environmental impacts and assessing economic performance of floating wetlands for marine water pollution control. Journal of Marine Science and Engineering, 9(12), 1345. https://doi.org/10.3390/jmse9121345
  • Thompson, K. A., Mortazavian, S., Gonzalez, D. J., Bott, C., Hooper, J., Schaefer, C. E., & Dickenson, E. R. V. (2022). Poly- and perfluoroalkyl substances in municipal wastewater treatment plants in the United States: seasonal patterns and meta-analysis of long-term trends and average concentrations. ACS ES&T Water, 2(5), 690–700. https://doi.org/10.1021/acsestwater.1c00377
  • UNEP. (2021). Proposal to list long-chain perfluorocarboxylic acids, their salts and related compounds in annexes A, B And/or C to the Stockholm convention on persistent organic pollutants. Retrieved August 27, 2023 from https://www.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC17/MeetingDocuments/tabid/8918/Default.aspx
  • US EPA. (2023). Per- and polyfluoroalkyl substances (PFAS): Proposed PFAS national primary drinking water regulation. Retrieved August 23, 2023 from https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas
  • Wang, J., Long, Y., Yu, G., Wang, G., Zhou, Z., Li, P., Zhang, Y., Yang, K., & Wang, S. (2022). A review on microorganisms in constructed wetlands for typical pollutant removal: Species, function, and diversity. Frontiers in Microbiology, 13, 845725. https://doi.org/10.3389/fmicb.2022.845725
  • Wang, N., Liu, J., Buck, R. C., Korzeniowski, S. H., Wolstenholme, B. W., Folsom, P. W., & Sulecki, L. M. (2011). 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere, 82(6), 853–858. https://doi.org/10.1016/j.chemosphere.2010.11.003
  • Wang, N., Szostek, B., Buck, R. C., Folsom, P. W., Sulecki, L. M., Capka, V., Berti, W. R., & Gannon, J. T. (2005). Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown. Environmental Science & Technology, 39(19), 7516–7528. https://doi.org/10.1021/es0506760
  • Wang, T.-T., Ying, G.-G., He, L.-Y., Liu, Y.-S., & Zhao, J.-L. (2020). Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale. Science of the Total Environment, 733, 139383. https://doi.org/10.1016/j.scitotenv.2020.139383
  • Wang, T.-T., Ying, G.-G., Shi, W.-J., Zhao, J.-L., Liu, Y.-S., Chen, J., Ma, D.-D., & Xiong, Q. (2020). Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: Tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS). Environmental Science & Technology, 54(10), 6009–6020. https://doi.org/10.1021/acs.est.9b05160
  • Wanninayake, D. M. (2021). Comparison of currently available PFAS remediation technologies in water: A review. Journal of Environmental Management, 283, 111977. https://doi.org/10.1016/j.jenvman.2021.111977
  • Webster, E., Ellis, D. A., & Reid, L. K. (2010). Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: An investigation of the role of individual species partitioning. Environmental Toxicology and Chemistry, 29(7), 1466–1475. https://doi.org/10.1002/etc.181
  • Wen, B., Wu, Y., Zhang, H., Liu, Y., Hu, X., Huang, H., & Zhang, S. (2016). The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution, 216, 682–688. https://doi.org/10.1016/j.envpol.2016.06.032
  • White, S. A. (2021). Plant nutrient uptake in full-scale floating treatment wetlands in a Florida stormwater pond: 2016–2020. Water, 13(4), 569. https://doi.org/10.3390/w13040569
  • Williams, J. B. (2002). Phytoremediation in Wetland ecosystems: Progress, problems, and potential. Critical Reviews in Plant Sciences, 21(6), 607–635. https://doi.org/10.1080/0735-260291044386
  • Wright, I. J., & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 15(3), 351–359. https://doi.org/10.1046/j.1365-2435.2001.00522.x
  • Yang, S.-H., Shi, Y., Strynar, M., & Chu, K.-H. (2022). Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. Journal of Hazardous Materials, 423(Pt A), 127052. https://doi.org/10.1016/j.jhazmat.2021.127052
  • Yeh, N., Yeh, P., & Chang, Y.-H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616–622. https://doi.org/10.1016/j.rser.2015.03.090
  • Yin, T., Chen, H., Reinhard, M., Yi, X., He, Y., & Gin, K. Y.-H. (2017). Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate. Water Research, 125, 418–426. https://doi.org/10.1016/j.watres.2017.08.071
  • Yu, Y., Che, S., Ren, C., Jin, B., Tian, Z., Liu, J., & Men, Y. (2022). Microbial defluorination of unsaturated per- and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: A structure specificity study. Environmental Science & Technology, 56(8), 4894–4904. https://doi.org/10.1021/acs.est.1c05509
  • Yu, Y., Zhang, K., Li, Z., Ren, C., Chen, J., Lin, Y.-H., Liu, J., & Men, Y. (2020). Microbial cleavage of C–F bonds in Two C6 per- and polyfluorinated compounds via reductive defluorination. Environmental Science & Technology, 54(22), 14393–14402. https://doi.org/10.1021/acs.est.0c04483
  • Zhang, D. Q., Wang, M., He, Q., Niu, X., & Liang, Y. (2020). Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community. Environmental Pollution, 257, 113575. https://doi.org/10.1016/j.envpol.2019.113575
  • Zhang, L., Sun, H., Wang, Q., Chen, H., Yao, Y., Zhao, Z., & Alder, A. C. (2019). Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2-C8) by wheat (Triticum acstivnm L.). Science of the Total Environment, 654, 19–27. https://doi.org/10.1016/j.scitotenv.2018.10.443
  • Zhang, W., & Liang, Y. (2020). Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed. Science of the Total Environment, 724, 138357. https://doi.org/10.1016/j.scitotenv.2020.138357
  • Zhang, W., Cao, H., & Liang, Y. (2021). Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Science of the Total Environment, 771, 144805. https://doi.org/10.1016/j.scitotenv.2020.144805
  • Zhang, W., Pang, S., Lin, Z., Mishra, S., Bhatt, P., & Chen, S. (2021). Biotransformation of perfluoroalkyl acid precursors from various environmental systems: Advances and perspectives. Environmental Pollution, 272, 115908. https://doi.org/10.1016/j.envpol.2020.115908
  • Zhang, W., Zhang, D., Zagorevski, D. V., & Liang, Y. (2019). Exposure of Juncus effusus to seven perfluoroalkyl acids: Uptake, accumulation and phytotoxicity. Chemosphere, 233, 300–308. https://doi.org/10.1016/j.chemosphere.2019.05.258
  • Zhang, Y., Qv, Z., Wang, J., Yang, Y., Chen, X., Wang, J., Zhang, Y., & Zhu, L. (2022). Natural biofilm as a potential integrative sample for evaluating the contamination and impacts of PFAS on aquatic ecosystems. Water Research, 215, 118233. https://doi.org/10.1016/j.watres.2022.118233
  • Zhang, Z., Sarkar, D., Biswas, J. K., & Datta, R. (2022). Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresource Technology, 344(Pt B), 126223. https://doi.org/10.1016/j.biortech.2021.126223
  • Zhi, Y., Lu, H., Grieger, K. D., Munoz, G., Li, W., Wang, X., He, Q., & Qian, S. (2022). Bioaccumulation and translocation of 6:2 fluorotelomer sulfonate, GenX, and perfluoroalkyl acids by urban spontaneous plants. ACS ES&T Engineering, 2(7), 1169–1178. https://doi.org/10.1021/acsestengg.1c00423