92
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Environmental behavior, toxic potencies, and risks of liquid crystal monomers: A critical review

, , , , , , & show all

References

  • Amato, A., & Beolchini, F. (2018). End of life liquid crystal displays recycling: A patent review. Journal of Environmental Management, 225, 1–9. https://doi.org/10.1016/j.jenvman.2018.07.035
  • An, R., Li, Y., Niu, X., & Yu, H. (2008). Responses of antioxidant enzymes in catfish exposed to liquid crystals from E-waste. International Journal of Environmental Research and Public Health, 5(2), 99–103. https://doi.org/10.3390/ijerph5020099
  • Baldé, C. P., D’Angelo, E., Deubzer, V. L. O., & Kuehr, R. (2022). Global transboundary E-waste flows monitor – 2022. United Nations Institute for Training and Research (UNITAR).
  • Bao, Y., Zhu, M., & Su, G. (2023). Tissue-specific accumulation, bioaccumulation, and depuration of liquid crystal monomers (LCMs) in adult zebrafish (Danio rerio). The Science of the Total Environment, 859(Pt 2), 160267. https://doi.org/10.1016/j.scitotenv.2022.160267
  • Bojić, M., Debeljak, Ž., & Guengerich, F. P., (2023). Principles of xenobiotic metabolism (biotransformation). In D. Primorac (eds.). Pharmacogenomics in clinical practice (pp. 13–33). Springer International Publishing. https://doi.org/10.1007/978-3-031-45903-0_2
  • Borthakur, A., & Govind, M. (2017). Emerging trends in consumers’ E-waste disposal behaviour and awareness: A worldwide overview with special focus on India. Resources, Conservation and Recycling, 117, 102–113. https://doi.org/10.1016/j.resconrec.2016.11.011
  • Chakraborty, J., & Das, S. (2016). Characterization of the metabolic pathway and catabolic gene expression in ­biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11. Chemosphere, 144, 1706–1714. https://doi.org/10.1016/j.chemosphere.2015.10.059
  • Chen, Y., Zhang, L., & Xu, Z. (2017). Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels. Journal of Hazardous Materials, 327, 55–63. https://doi.org/10.1016/j.jhazmat.2016.12.026
  • Cheng, Z., Shi, Q., Wang, Y., Zhao, L., Li, X., Sun, Z., Lu, Y., Liu, N., Su, G., Wang, L., & Sun, H. (2022). Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks. Environmental Science & Technology, 56(4), 2248–2257. https://doi.org/10.1021/acs.est.1c04621
  • Cheng, Z., Zhang, S., Su, H., Zhao, H., Su, G., Fang, M., & Wang, L. (2023). Emerging organic contaminants of liquid crystal monomers: Environmental occurrence, recycling and removal technologies, toxicities and health risks. Eco-Environment & Health, 2(3), 131–141. https://doi.org/10.1016/j.eehl.2023.07.002
  • Chinese Standard GB/T 32357-2015. (2015). Guide for pollution control of waste electrical and electronic products’ take-back and treatment. Standardization administration of the People’s Republic of China: GB/T 32357–2015.
  • EPA, U. S. (2017). Operation manual for the ECOlogical Structure-Activity Relationship Model (ECOSAR). Class Program.
  • European Commission. (2024). Directive (EU) 2024/884 of the European Parliament and of the Council of 13 March 2024 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union, L, 1–6. http://data.europa.eu/eli/dir/2024/884/oj
  • Feng, Z., Du, B., Shen, M., Han, X., Liang, X., & Zeng, L. (2023). Nationwide occurrence and distribution of liquid crystal monomers in municipal sewage sludge of China. The Science of the Total Environment, 892, 164453. https://doi.org/10.1016/j.scitotenv.2023.164453
  • Feng, J.-J., Sun, X.-F., & Zeng, E. Y. (2022). Emissions of liquid crystal monomers from obsolete smartphone screens in indoor settings: Characteristics and human exposure risk. Environmental Science & Technology, 56(12), 8053–8060. https://doi.org/10.1021/acs.est.2c01094
  • Feng, J.-J., Sun, X.-F., & Zeng, E. Y. (2023). Predicted health and environmental hazards of liquid crystal materials via quantitative structure-property relationship modeling. Journal of Hazardous Materials, 446, 130592. https://doi.org/10.1016/j.jhazmat.2022.130592
  • Fiedler, H., Kallenborn, R., Boer, J., & Sydnes, L. K. (2019). The stockholm convention: A tool for the global regulation of persistent organic pollutants. Chemistry International, 41(2), 4–11. https://doi.org/10.1515/ci-2019-0202
  • Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020. Quantities, flows, and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)—co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.
  • Gao, Y., Hu, X., Niu, X., Luo, N., Wang, M., Ji, Y., Li, G., & An, T. (2023). Advances in transformation mechanism and increased adverse effects of pharmaceuticals and personal care products during environmental geochemistry processes. Reviews of Environmental Contamination and Toxicology, 261(1), 25. https://doi.org/10.1007/s44169-023-00048-8
  • Ge, J., Du, B., Shen, M., Feng, Z., & Zeng, L. (2023). A review of liquid crystal monomers: Environmental occurrence, degradation, toxicity, and human exposure of an emerging class of E-waste pollutants. Environmental Pollution (Barking, Essex: 1987), 335, 122267. https://doi.org/10.1016/j.envpol.2023.122267
  • Godyń, J., Zaręba, P., Łażewska, D., Stary, D., Reiner-Link, D., Frank, A., Latacz, G., Mogilski, S., Kaleta, M., Doroz-Płonka, A., Lubelska, A., Honkisz-Orzechowska, E., Olejarz-Maciej, A., Handzlik, J., Stark, H., Kieć-Kononowicz, K., Malawska, B., & Bajda, M. (2021). Cyanobiphenyls: Novel H3 receptor ligands with ­cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer’s disease. Bioorganic Chemistry, 114, 105129. https://doi.org/10.1016/j.bioorg.2021.105129
  • He, W., Cui, Y., Li, Y., Yang, H., Liu, Z., Zhang, M., & Li, Y. (2024). Accumulation characteristics of liquid crystal monomers in plants: A multidimensional analysis. Journal of Hazardous Materials, 468, 133848. https://doi.org/10.1016/j.jhazmat.2024.133848
  • He, W., Cui, Y., Yang, H., Gao, J., Zhao, Y., Hao, N., Li, Y., & Zhang, M. (2024). Aquatic toxicity, ecological effects, human exposure pathways and health risk assessment of liquid crystal monomers. Journal of Hazardous Materials, 461, 132681. https://doi.org/10.1016/j.jhazmat.2023.132681
  • He, S., He, J., Wu, F., Zhao, Y., Jin, X., & Martyniuk, C. J. (2024). In vivo and in silico toxicity assessment of four common liquid crystal monomers to Daphnia magna: Novel endocrine disrupting chemicals in crustaceans? The Science of the Total Environment, 912, 168757. https://doi.org/10.1016/j.scitotenv.2023.168757
  • Hong, B., Zhou, M., Li, J., Yu, S., Liu, X., Chen, P., Zhang, Y., & Niu, Y. (2024). Effect of typhoons on spatiotemporal patterns of multi-group persistent organic pollutants in sediment of Chinese southeastern coastal estuaries. Journal of Hazardous Materials, 461, 132557. https://doi.org/10.1016/j.jhazmat.2023.132557
  • Huang, Y., Zhang, X., Li, C., Zhao, Y., Zhang, Y-N., & Qu, J. (2022). Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods. Journal of Hazardous Materials, 424(Pt B), 127519. https://doi.org/10.1016/j.jhazmat.2021.127519
  • Huo, Y., An, Z., Li, M., Jiang, J., Zhou, Y., Xie, J., Zhang, J., & He, M. (2024). Atmospheric fate of typical liquid crystal monomers in the tropospheric gas, liquid, and granular phases. Journal of Environmental Sciences (China), 136, 348–360. https://doi.org/10.1016/j.jes.2022.12.036
  • Izhar, S., Yoshida, H., Nishio, E., Utsumi, Y., & Kakimori, N. (2019). Removal and recovery attempt of liquid crystal from waste LCD panels using subcritical water. Waste Management (New York, N.Y.), 92, 15–20. https://doi.org/10.1016/j.wasman.2019.04.060
  • Jin, Q., Fan, Y., Lu, Y., Zhan, Y., Sun, J., Tao, D., & He, Y. (2023). Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. Environment International, 180, 108212. https://doi.org/10.1016/j.envint.2023.108212
  • Jin, Q., Tao, D., Lu, Y., Sun, J., Lam, C. H., Su, G., & He, Y. (2022). New insight on occurrence of liquid crystal monomers: A class of emerging E-waste pollutants in municipal landfill leachate. Journal of Hazardous Materials, 423(Pt B), 127146. https://doi.org/10.1016/j.jhazmat.2021.127146
  • Jones, J. C. (2018). The fiftieth anniversary of the liquid crystal display. Liquid Crystals Today, 27(3), 44–70. https://doi.org/10.1080/1358314X.2018.1529129
  • Kim, H.-Y., Shin, S.-M., Ham, M., Lim, C.-H., & Byeon, S.-H. (2015). Exposure monitoring and risk assessment of biphenyl in the workplace. International Journal of Environmental Research and Public Health, 12(5), 5116–5128. https://doi.org/10.3390/ijerph120505116
  • Kong, Y., Wen, Y., Su, G., Peng, Y., & Cui, X. (2023). Tissue-specific uptake and distribution of liquid crystal monomers (LCMs) in mice. Environment International, 174, 107894. https://doi.org/10.1016/j.envint.2023.107894
  • Koppel, N., Maini Rekdal, V., & Balskus, E. P. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science (New York, N.Y.), 356(6344), 1246–1257. https://doi.org/10.1126/science.aag2770
  • Liang, Q., Tian, K., Li, L., He, Y., Zhao, T., Liu, B., Wu, Q., Huang, B., Zhao, L., & Teng, Y. (2022). Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an E-waste dismantling site, Southeast China. Ecotoxicology and Environmental Safety, 242, 113929. https://doi.org/10.1016/j.ecoenv.2022.113929
  • Liang, X., Xie, R., Zhu, C., Chen, H., Shen, M., Li, Q., Du, B., Luo, D., & Zeng, L. (2021). Comprehensive identification of liquid crystal monomers—biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues—in waste LCD panels and the first estimate of their global release into the environment. Environmental Science & Technology, 55(18), 12424–12436. https://doi.org/10.1021/acs.est.1c03901
  • Li, L., Chen, C., Li, D., Breivik, K., Abbasi, G., & Li, Y. (2023). What do we know about the production and release of persistent organic pollutants in the global environment? Environmental Science: Advances, 2(1), 55–68. https://doi.org/10.1039/D2VA00145D
  • Li, Y.-F., Hao, S., Ma, W.-L., Yang, P.-F., Li, W.-L., Zhang, Z.-F., Liu, L.-Y., & Macdonald, R. W. (2024). Persistent organic pollutants in global surface soils: Distributions and fractionations. Environmental Science and Ecotechnology, 18, 100311. https://doi.org/10.1016/j.ese.2023.100311
  • Li, C., Huang, Y., Zhang, X., Zhao, Y., & Huo, Y. (2021). Atmospheric fate and risk investigation of typical liquid crystal monomers. ACS Sustainable Chemistry & Engineering, 9(9), 3600–3607. https://doi.org/10.1021/acssuschemeng.0c09346
  • Li, R., Ren, K., Su, H., Wei, Y., & Su, G. (2023). Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones. The Science of the Total Environment, 854, 158408. https://doi.org/10.1016/j.scitotenv.2022.158408
  • Liu, Q., & Abbatt, J. P. D. (2021). Liquid crystal display screens as a source for indoor volatile organic compounds. Proceedings of the National Academy of Sciences, 118(23), e2105067118. https://doi.org/10.1073/pnas.2105067118
  • Liu, Q., Liggio, J., Wentzell, J., Lee, P., Li, K., & Li, S.-M. (2020). Atmospheric OH oxidation chemistry of particulate liquid crystal monomers: An emerging persistent organic pollutant in air. Environmental Science & Technology Letters, 7(9), 646–652. https://doi.org/10.1021/acs.estlett.0c00447
  • Liu, L.-Y., Xie, J.-F., Yu, Z.-M., & Zeng, E. Y. (2023). Liquid crystal monomers in multimedia environments and potential human exposure risk: A short review. Current Opinion in Environmental Science & Health, 32, 100447. https://doi.org/10.1016/j.coesh.2023.100447
  • Liu, G., Zhang, S., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environmental Pollution (Barking, Essex: 1987), 214, 806–815. https://doi.org/10.1016/j.envpol.2016.04.089
  • Li, Y., Zhang, T., Cheng, Z., Zhang, Q., Yang, M., Zhao, L., Zhang, S., Lu, Y., Sun, H., & Wang, L. (2022). Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment. Environment International, 169, 107535. https://doi.org/10.1016/j.envint.2022.107535
  • Luk, Y.-Y., Campbell, S. F., Abbott, N. L., & Murphy, C. J. (2004). Non-toxic thermotropic liquid crystals for use with mammalian cells. Liquid Crystals, 31(5), 611–621. https://doi.org/10.1080/02678290410001666020
  • Luo, N., Gao, Y., Chen, X., Wang, M., Niu, X., Li, G., & An, T. (2023). A critical review of environmental exposure, metabolic transformation, and the human health risks of synthetic musks. Critical Reviews in Environmental Science and Technology, 53(24), 2132–2149. https://doi.org/10.1080/10643389.2023.2217068
  • Marteinson, S. C., Bodnaryk, A., Fry, M., Riddell, N., Letcher, R. J., Marvin, C., Tomy, G. T., & Fernie, K. J. (2021). A review of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity. Environmental Research, 195, 110497. https://doi.org/10.1016/j.envres.2020.110497
  • Matharu, A. S. (2012). Sustainability in LCD manufacturing, recycling and reuse. In: Chen, J., Cranton, W., Fihn, M.(eds.). Handbook of visual display technology (pp. 2621–2639). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_166
  • Ma, S., Yu, Y., Yang, Y., Li, G., & An, T. (2020). A new advance in the potential exposure to “old” and “new” halogenated flame retardants in the atmospheric environments and biota: From occurrence to transformation products and metabolites. Critical Reviews in Environmental Science and Technology, 50(19), 1935–1983. https://doi.org/10.1080/10643389.2019.1681051
  • Ma, J., Zhu, C., Lu, J., Wang, T., Hu, S., & Chen, T. (2017). Photochemical reaction between biphenyl and N(III) in the atmospheric aqueous phase. Chemosphere, 167, 462–468. https://doi.org/10.1016/j.chemosphere.2016.10.010
  • Molski, M. (2021). Theoretical modeling of structure-toxicity relationship of cyanides. Toxicology Letters, 349, 30–39. https://doi.org/10.1016/j.toxlet.2021.05.011
  • Okwu, O., Hursthouse, A., Viza, E., & Idoko, L. (2022). New models to reduce the health risks of informal WEEE recyclers in MTN phone village, Rumukurushi, Port Harcourt, Nigeria. Toxics, 10(2), 84. https://doi.org/10.3390/toxics10020084
  • Peng, X., Yang, L., Liu, Z., Lou, S., Mei, S., Li, M., Chen, Z., & Zhang, H. (2022). Structural basis for recognition of antihistamine drug by human histamine receptor. Nature Communications, 13(1), 6105. https://doi.org/10.1038/s41467-022-33880-y
  • Shen, M., Feng, Z., Liang, X., Chen, H., Zhu, C., Du, B., Li, Q., & Zeng, L. (2022). Release and gas–particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities. Environmental Science & Technology, 56(5), 3106–3116. https://doi.org/10.1021/acs.est.1c07394
  • Su, H., Ren, K., Li, R., Li, J., Gao, Z., Hu, G., Fu, P., & Su, G. (2022). Suspect screening of liquid crystal monomers (LCMs) in sediment using an established database covering 1173 LCMs. Environmental Science & Technology, 56(12), 8061–8070. https://doi.org/10.1021/acs.est.2c01130
  • Su, H., Shi, S., Zhu, M., Crump, D., Letcher, R. J., Giesy, J. P., & Su, G. (2019). Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26450–26458. https://doi.org/10.1073/pnas.1915322116
  • Su, H., Shi, S., Zhu, M., Li, J., & Su, G. (2021). Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas. Environmental Science & Technology, 55(4), 2336–2345. https://doi.org/10.1021/acs.est.0c06427
  • Tao, D., Jin, Q., Ruan, Y., Zhang, K., Jin, L., Zhan, Y., Su, G., Wu, J., Leung, K. M. Y., Lam, P. K. S., & He, Y. (2022). Widespread occurrence of emerging E-waste contaminants–Liquid crystal monomers in sediments of the Pearl River Estuary, China. Journal of Hazardous Materials, 437, 129377. https://doi.org/10.1016/j.jhazmat.2022.129377
  • Wang, Y., Cao, Y., He, W., Li, G., Zhu, H., & Huang, J. (2020). The improved treatment of liquid crystals into non-hazardous molecules using a microwave-assisted hydrothermal method. Journal of Hazardous Materials, 393, 122351. https://doi.org/10.1016/j.jhazmat.2020.122351
  • Wang, Y. L., Hu, H. J., Qi, S., & Liu, G. F. (2014). Environmental impacts assessment of liquid crystal extraction from wasted LCD panels. Applied Mechanics and Materials, 496-500, 55–62. https://doi.org/10.4028/www.scientific.net/AMM.496-500.55
  • Wang, J., Nan, J., Li, M., Yuan, G., Zhao, Y., Dai, J., & Zhang, K. (2022). First evidence of contamination in aquatic organisms with organic light-emitting materials. Environmental Science & Technology Letters, 9(9), 739–746. https://doi.org/10.1021/acs.estlett.2c00469
  • Wang, K., Shi, J.-H., Gao, J., Sun, Y., Wang, Z., Shi, X., Guo, W., Jin, Y., & Zhang, S. (2024). Arachidonic acid metabolism CYP450 pathway is deregulated in hepatocellular carcinoma and associated with microvascular ­invasion. Cell Biology International, 48(1), 31–45. https://doi.org/10.1002/cbin.12086
  • Wang, X., Yang, R., Zhang, J., Chen, X., Feng, Y., Niu, Y., & Shao, B. (2023). Metabolic profiling of the fluorinated liquid-crystal monomer 1-ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene. The Science of the Total Environment, 860, 160448. https://doi.org/10.1016/j.scitotenv.2022.160448
  • Wei, D., Yuan, K., Ai, F., Li, M., Zhu, N., Wang, Y., Zeng, K., Yin, D., Bu, Y., & Zhang, Z. (2023). Occurrence, spatial distributions, and temporal trends of bisphenol analogues in an E-waste dismantling area: Implications for risk assessment. The Science of the Total Environment, 867, 161498. https://doi.org/10.1016/j.scitotenv.2023.161498
  • Williams, K. S., & McDonnell, T., et al. (2019). Chapter 12 – Recycling liquid crystal displays. In V. Goodship (eds.). Waste electrical and electronic equipment (WEEE) handbook (2nd Ed.). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102158-3.00012-4
  • Woolverton, C. J., Gustely, E., Li, L., & Lavrentovich, O. D. (2005). Liquid crystal effects on bacterial viability. Liquid Crystals, 32(4), 417–423. https://doi.org/10.1080/02678290500074822
  • Xiu, F.-R., Song, Z., Lu, Y., Qi, Y., & Wang, M. (2022). A novel conversion strategy for organic compounds in waste liquid crystal displays based on the near/supercritical methanol process. Waste Management (New York, N.Y.), 153, 397–404. https://doi.org/10.1016/j.wasman.2022.09.020
  • Yadav, A., Rene, E. R., Mandal, M. K., & Dubey, K. K. (2023). In-vitro toxicity of cyclophosphamide and etoposide intermediates/metabolites produced by three white rot fungi. Environmental Quality Management, 32(4), 311–316. https://doi.org/10.1002/tqem.22008
  • Yadav, A., Rene, E., Sharma, M., Kumar, V., Mandal, M., & Dubey, K. (2023). Source, occurrence, and risk assessment of antineoplastic medicines in aquatic environments: A comprehensive review. Current Pollution Reports, 9(3), 391–409. https://doi.org/10.1007/s40726-023-00266-7
  • Yang, Q., Gao, Y., Ke, J., Show, P. L., Ge, Y., Liu, Y., Guo, R., & Chen, J. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376–7416. https://doi.org/10.1080/21655979.2021.1974657
  • Yang, R., Wang, X., Gao, Q., Sang, C., Zhao, Y., Niu, Y., & Shao, B. (2023). Dietary exposure and health risk of the emerging contaminant fluorinated liquid-crystal monomers. Environmental Science & Technology, 57(15), 6309–6319. https://doi.org/10.1021/acs.est.3c00322
  • Yang, R., Wang, X., Niu, Y., Chen, X., & Shao, B. (2023). Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study. Environment International, 176, 107993. https://doi.org/10.1016/j.envint.2023.107993
  • Yao, L.-L., Wang, J.-L., Xu, R.-F., Zhu, M., Ma, Y., Tang, B., Lu, Q.-Y., Cai, F.-S., Yan, X., Zheng, J., & Yu, Y.-J. (2023). Occurrence of liquid crystal monomers in indoor and outdoor air particle matters (PM10): Implications for human exposure indoors. The Science of the Total Environment, 905, 166964. https://doi.org/10.1016/j.scitotenv.2023.166964
  • Zhang, S., Cheng, Z., Yang, M., Guo, Z., Zhao, L., Baqar, M., Lu, Y., Wang, L., & Sun, H. (2023). Percutaneous penetration of liquid crystal monomers (LCMs) by in vitro three-dimensional human skin equivalents: Possible mechanisms and implications for human dermal exposure risks. Environmental Science & Technology, 57(11), 4454–4463. https://doi.org/10.1021/acs.est.2c07844
  • Zhang, W., Xie, H. Q., Li, Y., Zhou, M., Zhou, Z., Wang, R., Hahn, M. E., & Zhao, B. (2022). The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. Journal of Hazardous Materials, 426, 128084. https://doi.org/10.1016/j.jhazmat.2021.128084
  • Zhang, S., Yang, M., Li, Y., Wang, Y., Lu, Y., Cheng, Z., & Sun, H. (2022). Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study. Environment International, 164, 107295. https://doi.org/10.1016/j.envint.2022.107295
  • Zhao, H., Li, C., Naik, M. Y., Wu, J., Cardilla, A., Liu, M., Zhao, F., Snyder, S. A., Xia, Y., Su, G., & Fang, M. (2023). Liquid crystal monomer: A potential PPARγ antagonist. Environmental Science & Technology, 57(9), 3758–3771. https://doi.org/10.1021/acs.est.2c08109
  • Zhong, Y., Ren, J., Li, R., Xuan, Y., Yao, W., Yang, Q., Gan, Y., Yu, S., & Yuan, J. (2023). Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study. Chemosphere, 314, 137701. https://doi.org/10.1016/j.chemosphere.2022.137701
  • Zhu, M., Shen, M., Liang, X., Chen, H., Zhu, C., Du, B., Luo, D., Lan, S., Feng, Z., & Zeng, L. (2021). Identification of environmental liquid-crystal monomers: A class of new persistent organic pollutants—Fluorinated biphenyls and analogues—emitted from E-waste dismantling. Environmental Science & Technology, 55(9), 5984–5992. https://doi.org/10.1021/acs.est.1c00112
  • Zhuang, X., Li, M., Song, X., Wang, R., Gu, W., Zhuang, X., & Bai, J. (2021). Stocks of hazardous substance in typical liquid crystal display equipment in China and its pollution flow analysis. Environmental Pollution & Control, 43, 445–452. (In Chinese). https://doi.org/10.15985/j.cnki.1001-3865.2021.04.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.