0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Dissimilatory iron-reducing microorganisms: The phylogeny, physiology, applications and outlook

, , , , , & ORCID Icon show all

References

  • Abu Laban, N., Selesi, D., Rattei, T., Tischler, P., & Meckenstock, R. U. (2010). Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture: Enzymes involved in anaerobic benzene degradation. Environmental Microbiology, 12(10), 2783–2796. https://doi.org/10.1111/j.1462-2920.2010.02248.x
  • Aklujkar, M., Coppi, M. V., Leang, C., Kim, B. C., Chavan, M. A., Perpetua, L. A., Giloteaux, L., Liu, A., & Holmes, D. E. (2013). Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology (Reading, England), 159(Pt 3), 515–535. https://doi.org/10.1099/mic.0.064089-0
  • Alphandéry, E. (2020). Bio-synthesized iron oxide nanoparticles for cancer treatment. International Journal of Pharmaceutics, 586, 119472. https://doi.org/10.1016/j.ijpharm.2020.119472
  • Amos, R. T., Bekins, B. A., Cozzarelli, I. M., Voytek, M. A., Kirshtein, J. D., Jones, E. J. P., & Blowes, D. W. (2012). Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology, 10(6), 506–517. https://doi.org/10.1111/j.1472-4669.2012.00341.x
  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., & Lovley, D. R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  • Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., & Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 5(26), 977–999. https://doi.org/10.1098/rsif.2008.0170
  • Baek, G., Jung, H., Kim, J., & Lee, C. (2017). A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent: Magnetic separation and recycling of magnetite. Bioresource Technology, 241, 830–840. https://doi.org/10.1016/j.biortech.2017.06.018
  • Baek, G., Kim, J., Cho, K., Bae, H., & Lee, C. (2015). The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: Their potential for enhanced biomethanation. Applied Microbiology and Biotechnology, 99(23), 10355–10366. https://doi.org/10.1007/s00253-015-6900-y
  • Bajracharya, S., Krige, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2023). Microbial electrosynthesis using 3D bioprinting of Sporomusa ovata on copper, stainless-steel, and titanium cathodes for CO2 reduction. Fermentation, 10(1), 34. https://doi.org/10.3390/fermentation10010034
  • Balashova, V. V., & Zavarzin, G. (1979). Anaerobic reduction of ferric iron by hydrogen bacteria. Mikrobiologiia, 48(5), 773–778.
  • Baquero, D. P., Cvirkaite-Krupovic, V., Hu, S. S., Fields, J. L., Liu, X., Rensing, C., Egelman, E. H., Krupovic, M., & Wang, F. (2023). Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell, 186(13), 2853–2864.e8. https://doi.org/10.1016/j.cell.2023.05.012
  • Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science (New York, N.Y.), 325(5937), 184–187. https://doi.org/10.1126/science.1169984
  • Beblawy, S., Bursac, T., Paquete, C., Louro, R., Clarke, T. A., & Gescher, J. (2018). Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Molecular Microbiology, 109(5), 571–583. https://doi.org/10.1111/mmi.14067
  • Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485. https://doi.org/10.1126/science.1066771
  • Botton, S., & Parsons, J. R. (2007). Degradation of BTX by dissimilatory iron-reducing cultures. Biodegradation, 18(3), 371–381. https://doi.org/10.1007/s10532-006-9071-9
  • Butler, J. E., Young, N. D., & Lovley, D. R. (2010). Evolution of electron transfer out of the cell: Comparative genomics of six Geobacter genomes. BMC Genomics, 11(1), 40. https://doi.org/10.1186/1471-2164-11-40
  • Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E., & Kappler, A. (2015a). Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science (New York, N.Y.), 347(6229), 1473–1476. https://doi.org/10.1126/science.aaa4834
  • Byrne, J. M., Muhamadali, H., Coker, V. S., Cooper, J., & Lloyd, J. R. (2015b). Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. Journal of the Royal Society, Interface, 12(107), 20150240. https://doi.org/10.1098/rsif.2015.0240
  • Canfield, D. E., Thamdrup, B., & Hansen, J. W. (1993). The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57(16), 3867–3883. https://doi.org/10.1016/0016-7037(93)90340-3
  • Carlson, H. K., Iavarone, A. T., Gorur, A., Yeo, B. S., Tran, R., Melnyk, R. A., Mathies, R. A., Auer, M., & Coates, J. D. (2012). Surface multiheme c -type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1702–1707. https://doi.org/10.1073/pnas.1112905109
  • Chang, H-S., Buettner, S. W., Seaman, J., Jaffé, P. R., Koster van Groos, P., Li, D., Peacock, A. D., Scheckel, K. G., & Kaplan, D. I. (2014). Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environmental Science & Technology, 48(16), 9270–9278. https://doi.org/10.1021/es5015136
  • Chen, H., Dong, F., & Minteer, S. D. (2020). The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nature Catalysis, 3(3), 225–244. https://doi.org/10.1038/s41929-019-0408-2
  • Chen, L., Li, L., Zhang, S., Zhang, W., Xue, K., Wang, Y., & Dong, X. (2022). Anaerobic methane oxidation linked to Fe(III) reduction in a Candidatus methanoperedens-enriched consortium from the cold Zoige wetland at Tibetan Plateau. Environmental Microbiology, 24(2), 614–625. https://doi.org/10.1111/1462-2920.15848
  • Clément, J., Shrestha, J., Ehrenfeld, J., & Jaffe, P. (2005). Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology and Biochemistry, 37(12), 2323–2328. https://doi.org/10.1016/j.soilbio.2005.03.027
  • Coates, J. D. (1999). Geothrix ferrnentans gen. nov., sp. nov., a novel Fe(l1l)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49(4), 1615–1622. https://doi.org/10.1099/00207713-49-4-1615
  • Coates, J. D., & Achenbach, L. A. (2004). Microbial perchlorate reduction: Rocket-fuelled metabolism. Nature Reviews Microbiology, 2(7), 569–580. https://doi.org/10.1038/nrmicro926
  • Coates, J. D., Bhupathiraju, V. K., Achenbach, L. A., Mclnerney, M. J., & Lovley, D. R. (2001). Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 2), 581–588. https://doi.org/10.1099/00207713-51-2-581
  • Coates, J. D., Ellis, D. J., Blunt-Harris, E. L., Gaw, C. V., Roden, E. E., & Lovley, D. R. (1998). Recovery of humic-reducing bacteria from a diversity of environments. Applied and Environmental Microbiology, 64(4), 1504–1509. https://doi.org/10.1128/AEM.64.4.1504-1509.1998
  • Colombo, C., Palumbo, G., He, J.-Z., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14(3), 538–548. https://doi.org/10.1007/s11368-013-0814-z
  • Costa, N. L., Hermann, B., Fourmond, V., Faustino, M. M., Teixeira, M., Einsle, O., Paquete, C. M., & Louro, R. O. (2019). How thermophilic Gram-positive organisms perform extracellular electron transfer: Characterization of the cell surface terminal reductase OcwA. mBio, 10(4), e01210–19. https://doi.org/10.1128/mbio.01210-19
  • Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M. A., Kessler, J. D., Reeburgh, W. S., Roberts, J. A., González, L., Douglas Haffner, G., Mucci, A., Sundby, B., & Fowle, D. A. (2011). The methane cycle in ferruginous Lake Matano: Methane cycle in ferruginous Lake Matano. Geobiology, 9(1), 61–78. https://doi.org/10.1111/j.1472-4669.2010.00257.x
  • Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M., & Magnuson, T. S. (2007). Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum. Environmental Science & Technology, 41(1), 146–152. https://doi.org/10.1021/es061333k
  • Dalla Vecchia, E., Shao, P. P., Suvorova, E., Chiappe, D., Hamelin, R., & Bernier-Latmani, R. (2014). Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Frontiers in Microbiology, 5, 432. https://doi.org/10.3389/fmicb.2014.00432
  • DiChristina, T. J., & DeLong, E. F. (1993). Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. Applied and Environmental Microbiology, 59(12), 4152–4160. https://doi.org/10.1128/aem.59.12.4152-4160.1993
  • Ding, M., Shiu, H.-Y., Li, S.-L., Lee, C. K., Wang, G., Wu, H., Weiss, N. O., Young, T. D., Weiss, P. S., Wong, G. C. L., Nealson, K. H., Huang, Y., & Duan, X. (2016). Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano, 10(11), 9919–9926. https://doi.org/10.1021/acsnano.6b03655
  • Dobbin, P. S., Warren, L. H., Cook, N. J., McEwan, A. G., Powell, A. K., & Richardson, D. J. (1996). Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology (Reading, England), 142(4), 765–774. https://doi.org/10.1099/00221287-142-4-765
  • Dong, H., Huang, L., Zhao, L., Zeng, Q., Liu, X., Sheng, Y., Shi, L., Wu, G., Jiang, H., Li, F., Zhang, L., Guo, D., Li, G., Hou, W. & Chen, H. (2022). A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. National Science Review, 9, nwac128.
  • Dong, Y., Shan, Y., Xia, K., & Shi, L. (2021). The proposed molecular mechanisms used by archaea for Fe(III) reduction and Fe(II) oxidation. Frontiers in Microbiology, 12, 690918. https://doi.org/10.3389/fmicb.2021.690918
  • Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M., Röckmann, T., van der Veen, C., Bândă, N., Kartal, B., Ettwig, K. F., & Slomp, C. P. (2015). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science & Technology, 49(1), 277–283. https://doi.org/10.1021/es503663z
  • Esther, J., Pattanaik, A., Pradhan, N., & Sukla, L. B. (2020). Applications of Dissimilatory Iron Reducing Bacteria (DIRB) for recovery of Ni and Co from low-grade lateritic nickel ore. Materials Today: Proceedings, 30, 351–354. https://doi.org/10.1016/j.matpr.2020.02.167
  • Fang, Y., Yang, G., Wu, X., Lin, C., Qin, B., & Zhuang, L. (2024). A genetic engineering strategy to enhance outer membrane vesicle-mediated extracellular electron transfer of Geobacter sulfurreducens. Biosensors & Bioelectronics, 250, 116068. https://doi.org/10.1016/j.bios.2024.116068
  • Feinberg, L. F., Srikanth, R., Vachet, R. W., & Holden, J. F. (2008). Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Applied and Environmental Microbiology, 74(2), 396–402. https://doi.org/10.1128/AEM.02033-07
  • Fredrickson, J. K., & Gorby, Y. A. (1996). Environmental processes mediated by iron-reducing bacteria. Current Opinion in Biotechnology, 7(3), 287–294. https://doi.org/10.1016/s0958-1669(96)80032-2
  • Gao, K., & Lu, Y. (2021). Putative extracellular electron transfer in methanogenic archaea. Frontiers in Microbiology, 12, 611739. https://doi.org/10.3389/fmicb.2021.611739
  • Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., … Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363. https://doi.org/10.1073/pnas.0604517103
  • Guan, Q. S., Cao, W. Z., Wang, M., Wu, G. J., Wang, F. F., Jiang, C., Tao, Y. R., & Gao, Y. (2018). Nitrogen loss through anaerobic ammonium oxidation coupled with iron reduction in a mangrove wetland. European Journal of Soil Science, 69(4), 732–741. https://doi.org/10.1111/ejss.12552
  • Haas, J. R., & Dichristina, T. J. (2002). Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. Environmental Science & Technology, 36(3), 373–380. https://doi.org/10.1021/es0109287
  • He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., & Gadd, G. M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. The Science of the Total Environment, 610–611, 759–768. https://doi.org/10.1016/j.scitotenv.2017.08.140
  • Heijman, C. G., Grieder, E., Holliger, C., & Schwarzenbach, R. P. (1995). Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environmental Science & Technology, 29(3), 775–783. https://doi.org/10.1021/es00003a027
  • Hernandez, M. E., & Newman, D. K. (2001). Extracellular electron transfer. Cellular and Molecular Life Sciences: CMLS, 58(11), 1562–1571. https://doi.org/10.1007/PL00000796
  • Hofstetter, T. B., Heijman, C. G., Haderlein, S. B., Holliger, C., & Schwarzenbach, R. P. (1999). Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environmental Science & Technology, 33(9), 1479–1487. https://doi.org/10.1021/es9809760
  • Holmes, D. E., Bond, D. R., & Lovley, D. R. (2004). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Applied and Environmental Microbiology, 70(2), 1234–1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004
  • Holmes, D. E., O’Neil, R. A., Chavan, M. A., N’Guessan, L. A., Vrionis, H. A., Perpetua, L. A., Larrahondo, M. J., DiDonato, R., Liu, A., & Lovley, D. R. (2009). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. The ISME Journal, 3(2), 216–230. https://doi.org/10.1038/ismej.2008.89
  • Holmes, D. E., Ueki, T., Tang, H.-Y., Zhou, J., Smith, J. A., Chaput, G., & Lovley, D. R. (2019). A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. mBio, 10(4), e00789-19. https://doi.org/10.1128/mBio.00789-19
  • Huang, S., & Jaffé, P. R. (2018). Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. Plos One, 13(4), e0194007. https://doi.org/10.1371/journal.pone.0194007
  • Huang, L., Tang, J., Chen, M., Liu, X., & Zhou, S. (2018). Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens. Frontiers in Microbiology, 9, 2886. https://doi.org/10.3389/fmicb.2018.02886
  • Huber, H., Jannasch, H., Rachel, R., Fuchs, T., & Stetter, K. O. (1997). Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology, 20(3), 374–380. https://doi.org/10.1016/S0723-2020(97)80005-7
  • Jones, J. G., Gardener, S., & Simon, B. M. (1983). Bacterial reduction of ferric iron in a stratified eutrophic lake. Microbiology, 129(1), 131–139. https://doi.org/10.1099/00221287-129-1-131
  • Kappler, A., Bryce, C., Mansor, M., Lueder, U., Byrne, J. M., & Swanner, E. D. (2021). An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology, 19(6), 360–374. https://doi.org/10.1038/s41579-020-00502-7
  • Kashefi, K., Holmes, D. E., Lovley, D. R., & Tor, J. M. (2004). Potential importance of dissimilatory Fe(III)-reducing microorganisms in hot sedimentary environments. In W. S. D. Wilcock, E. F. DeLong, D. S. Kelley, J. A. Baross, & S. C. Cary (Eds.), Geophysical monograph series (pp. 199–211). American Geophysical Union.
  • Kashefi, K., & Lovley, D. R. (2000). Reduction of Fe(III), Mn(IV), and toxic metals at 100 C by Pyrobaculum islandicum. Applied and Environmental Microbiology, 66, 1050–1056.
  • Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A.-L., & Lovley, D. R. (2002). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 3), 719–728. https://doi.org/10.1099/00207713-52-3-719
  • Kashyap, S., & Holden, J. F. (2021). Microbe-mineral interaction and novel proteins for iron oxide mineral reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi. Applied and Environmental Microbiology, 87(6), e02330-20. https://doi.org/10.1128/AEM.02330-20
  • Kato, S., Hashimoto, K., & Watanabe, K. (2012). Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 10042–10046. https://doi.org/10.1073/pnas.1117592109
  • Kostka, J. E., & Nealson, K. H. (1995). Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 29(10), 2535–2540. https://doi.org/10.1021/es00010a012
  • Kotloski, N. J., & Gralnick, J. A. (2013). Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio, 4(1), e00553-12. https://doi.org/10.1128/mBio.00553-12
  • Krukenberg, V., Harding, K., Richter, M., Glöckner, F. O., Gruber-Vodicka, H. R., Adam, B., Berg, J. S., Knittel, K., Tegetmeyer, H. E., Boetius, A., & Wegener, G. (2016). Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology, 18(9), 3073–3091. https://doi.org/10.1111/1462-2920.13283
  • Kulichevskaya, I. S., Suzina, N. E., Rijpstra, W. I. C., Damsté, J. S. S., & Dedysh, S. N. (2014). Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 8), 2857–2864. https://doi.org/10.1099/ijs.0.066175-0
  • Kunapuli, U., Jahn, M. K., Lueders, T., Geyer, R., Heipieper, H. J., & Meckenstock, R. U. (2010). Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 3), 686–695. https://doi.org/10.1099/ijs.0.003525-0
  • Lack, J. G., Chaudhuri, S. K., Chakraborty, R., Achenbach, L. A., & Coates, J. D. (2002). Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microbial Ecology, 43(4), 424–431. https://doi.org/10.1007/s00248-001-1061-1
  • Le, C. P., Nguyen, H. T., Nguyen, T. D., Nguyen, Q. H. M., Pham, H. T., & Dinh, H. T. (2021). Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment. Scientific Reports, 11(1), 784. https://doi.org/10.1038/s41598-020-80057-y
  • Lee, E. Y., Cho, K.-S., & Wook Ryu, H. (2002). Microbial refinement of kaolin by iron-reducing bacteria. Applied Clay Science, 22(1–2), 47–53. https://doi.org/10.1016/S0169-1317(02)00111-4
  • Lee, J. Y., Iglesias, B., Chu, C. E., Lawrence, D. J. P., & Crane Iii, E. J. (2017). Pyrobaculum igneiluti sp. nov., a novel anaerobic hyperthermophilic archaeon that reduces thiosulfate and ferric iron. International Journal of Systematic and Evolutionary Microbiology, 67(6), 1714–1719. https://doi.org/10.1099/ijsem.0.001850
  • Levar, C. E., Chan, C. H., Mehta-Kolte, M. G., & Bond, D. R. (2014). An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio, 5(6), e02034. https://doi.org/10.1128/mBio.02034-14
  • Levar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M., & Bond, D. R. (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. The ISME Journal, 11(3), 741–752. https://doi.org/10.1038/ismej.2016.146
  • Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M., & Portnoy, D. A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 562(7725), 140–144. https://doi.org/10.1038/s41586-018-0498-z
  • Liu, Y., Fredrickson, J. K., Zachara, J. M., & Shi, L. (2015). Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Frontiers in Microbiology, 6, 1075. https://doi.org/10.3389/fmicb.2015.01075
  • Liu, X., Ye, Y., Yang, N., Cheng, C., Rensing, C., Jin, C., Nealson, K. H., & Zhou, S. (2024). Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter. ISME Communications, 4(1), ycae058. https://doi.org/10.1093/ismeco/ycae058
  • Liu, G., Yu, H., Shen, L., Zhang, Y., Jin, R., Wang, J., & Zhou, J. (2021). Chapter 12: Microbe-driven generation of reactive oxygen species for contaminant degradation. In G. Saxena, V. Kumar, & M. P. Shah (Eds.), Bioremediation for environmental sustainability (pp. 293–324). Elsevier.
  • Li, C., Yi, X., Dang, Z., Yu, H., Zeng, T., Wei, C., & Feng, C. (2016). Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Chemosphere, 144, 2065–2072. https://doi.org/10.1016/j.chemosphere.2015.10.095
  • Li, Y., Zhao, Z., Yu, Q., Sun, C., Wang, M., & Zhang, Y. (2021). High-efficiency ethanol yield from anaerobic fermentation of organic wastes via stimulating growth of ethanol-producing Fe(III)-reducing bacteria with magnetite. ACS Sustainable Chemistry & Engineering, 9(3), 1246–1253. https://doi.org/10.1021/acssuschemeng.0c07348
  • Lloyd, J. R., Leang, C., Hodges Myerson, A. L., Coppi, M. V., Cuifo, S., Methe, B., Sandler, S. J., & Lovley, D. R. (2003). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. The Biochemical Journal, 369(Pt 1), 153–161. https://doi.org/10.1042/BJ20020597
  • Logan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319. https://doi.org/10.1038/s41579-019-0173-x
  • Lovley, D. R. (2006a). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes: Volume 2: Ecophysiology and biochemistry (pp. 635–658). Springer.
  • Lovley, D. R. (2006b). Bug juice: Harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497–508. https://doi.org/10.1038/nrmicro1442
  • Lovley, D. R. (2012a). Electromicrobiology. Annual Review of Microbiology, 66(1), 391–409. https://doi.org/10.1146/annurev-micro-092611-150104
  • Lovley, D. R. (2012b). Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochemical Society Transactions, 40(6), 1186–1190. https://doi.org/10.1042/BST20120131
  • Lovley, D. R. (2017). Syntrophy goes electric: direct interspecies electron transfer. Annual Review of Microbiology, 71(1), 643–664. https://doi.org/10.1146/annurev-micro-030117-020420
  • Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J. P., Gorby, Y. A., & Goodwin, S. (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 159(4), 336–344. https://doi.org/10.1007/BF00290916
  • Lovley, D. R., Holmes, D. E., & Nevin, K. P. (2004). Dissimilatory Fe(III) and Mn(IV) Reduction. In Advances in microbial physiology (pp. 219–286). Elsevier. https://doi.org/10.1016/S0065-2911(04)49005-5
  • Lovley, D. R., & Phillips, E. J. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4), 683–689. https://doi.org/10.1128/aem.51.4.683-689.1986
  • Lovley, D. R., Phillips, E. J., Lonergan, D. J., & Widman, P. K. (1995). Fe(III) and S0 reduction by Pelobacter carbinolicus. Applied and Environmental Microbiology, 61(6), 2132–2138. https://doi.org/10.1128/aem.61.6.2132-2138.1995
  • Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1–100.
  • Lovley, D. R., & Walker, D. J. F. (2019). Geobacter protein nanowires. Frontiers in Microbiology, 10, 2078. https://doi.org/10.3389/fmicb.2019.02078
  • Lovley, D. R., & Yao, J. (2021). Intrinsically conductive microbial nanowires for ‘green’ electronics with novel functions. Trends in Biotechnology, 39(9), 940–952. https://doi.org/10.1016/j.tibtech.2020.12.005
  • Lu, K., Ping, Q., Lu, Q., & Li, Y. (2022). Understanding roles of humic substance and protein on iron phosphate transformation during anaerobic fermentation of waste activated sludge. Bioresource Technology, 355, 127242. https://doi.org/10.1016/j.biortech.2022.127242
  • Luo, T., Xu, Q., Wei, W., Sun, J., Dai, X., & Ni, B.-J. (2022). Performance and mechanism of Fe3O4 improving biotransformation of waste activated sludge into liquid high-value products. Environmental Science & Technology, 56(6), 3658–3668. https://doi.org/10.1021/acs.est.1c05960
  • Luu, Y.-S., & Ramsay, J. A. (2003). Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology and Biotechnology, 19, 215–225.
  • Madjarov, J., Soares, R., Paquete, C. M., & Louro, R. O. (2022). Sporomusa ovata as catalyst for bioelectrochemical carbon dioxide reduction: A review across disciplines from microbiology to process engineering. Frontiers in Microbiology, 13, 913311. https://doi.org/10.3389/fmicb.2022.913311
  • Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S. F., Johnson, J. P., Rotello, V. M., Tuominen, M. T., & Lovley, D. R. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 6(9), 573–579. https://doi.org/10.1038/nnano.2011.119
  • Mardanov, A. V., Slododkina, G. B., Slobodkin, A. I., Beletsky, A. V., Gavrilov, S. N., Kublanov, I. V., Bonch-Osmolovskaya, E. A., Skryabin, K. G., & Ravin, N. V. (2015). The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Applied and Environmental Microbiology, 81(3), 1003–1012. https://doi.org/10.1128/AEM.02705-14
  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3968–3973. https://doi.org/10.1073/pnas.0710525105
  • Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12(12), 797–808. https://doi.org/10.1038/nrmicro3347
  • Mostovaya, A., Wind-Hansen, M., Rousteau, P., Bristow, L. A., & Thamdrup, B. (2022). Sulfate- and iron-dependent anaerobic methane oxidation occurring side-by-side in freshwater lake sediment. Limnology and Oceanography, 67(1), 231–246. https://doi.org/10.1002/lno.11988
  • Muehe, E. M., Obst, M., Hitchcock, A., Tyliszczak, T., Behrens, S., Schröder, C., Byrne, J. M., Michel, F. M., Krämer, U., & Kappler, A. (2013). Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environmental Science & Technology, 47(24), 14099–14109. https://doi.org/10.1021/es403365w
  • Müller, J. B., Ramos, D. T., Larose, C., Fernandes, M., Lazzarin, H. S. C., Vogel, T. M., & Corseuil, H. X. (2017). Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 326, 229–236. https://doi.org/10.1016/j.jhazmat.2016.12.005
  • Myers, C. R., & Myers, J. M. (1997). Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. Journal of Bacteriology, 179(4), 1143–1152. https://doi.org/10.1128/jb.179.4.1143-1152.1997
  • Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48(1), 311–343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1(2), e00103-10. https://doi.org/10.1128/mBio.00103-10
  • Nimje, V. R., Chen, C.-Y., Chen, C.-C., Jean, J.-S., Reddy, A. S., Fan, C.-W., Pan, K.-Y., Liu, H.-T., & Chen, J.-L. (2009). Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources, 190(2), 258–263. https://doi.org/10.1016/j.jpowsour.2009.01.019
  • Norði, K. À., Thamdrup, B., & Schubert, C. J. (2013). Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnology and Oceanography, 58(2), 546–554. https://doi.org/10.4319/lo.2013.58.2.0546
  • Núñez, C., Adams, L., Childers, S., & Lovley, D. R. (2004). The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. Journal of Bacteriology, 186(16), 5543–5546. https://doi.org/10.1128/JB.186.16.5543-5546.2004
  • Ogg, C. D., Greene, A. C., & Patel, B. K. C. (2010). Thermovenabulum gondwanense sp. nov., a thermophilic anaerobic Fe(III)-reducing bacterium isolated from microbial mats thriving in a Great Artesian Basin bore runoff channel. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 5), 1079–1084. https://doi.org/10.1099/ijs.0.009886-0
  • Okamoto, A., Nakamura, R., Nealson, K. H., & Hashimoto, K. (2014). Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem, 1(11), 1808–1812. https://doi.org/10.1002/celc.201402151
  • Oren, A., & Garrity, G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 71, 005056.
  • Pankratova, G., Hederstedt, L., & Gorton, L. (2019a). Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta, 1076, 32–47. https://doi.org/10.1016/j.aca.2019.05.007
  • Pankratova, G., Pankratov, D., Milton, R. D., Minteer, S. D., & Gorton, L. (2019b). Following nature: Bioinspired mediation strategy for Gram-positive bacterial cells. Advanced Energy Materials, 9, 1900215.
  • Pankratova, G., Szypulska, E., Pankratov, D., Leech, D., & Gorton, L. (2019c). Electron transfer between the Gram-positive Enterococcus faecalis bacterium and electrode surface through osmium redox polymers. ChemElectroChem, 6(1), 110–113. https://doi.org/10.1002/celc.201800683
  • Papassiopi, N., Vaxevanidou, K., & Paspaliaris, I. (2010). Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Minerals Engineering, 23(1), 25–31. https://doi.org/10.1016/j.mineng.2009.09.005
  • Paquete, C. M., Morgado, L., Salgueiro, C. A., & Louro, R. O. (2022). Molecular mechanisms of microbial extracellular electron transfer: The importance of multiheme cytochromes. Frontiers in Bioscience (Landmark Edition), 27(6), 174. https://doi.org/10.31083/j.fbl2706174
  • Parameswaran, P., Bry, T., Popat, S. C., Lusk, B. G., Rittmann, B. E., & Torres, C. I. (2013). Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environmental Science & Technology, 47(9), 4934–4940. https://doi.org/10.1021/es400321c
  • Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., Reed, S. B., Romine, M. F., Saffarini, D. A., Shi, L., Gorby, Y. A., Golbeck, J. H., & El-Naggar, M. Y. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12883–12888. https://doi.org/10.1073/pnas.1410551111
  • Pronk, J. T., & Johnson, D. B. (1992). Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiology Journal, 10(3-4), 153–171. https://doi.org/10.1080/01490459209377918
  • Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70(9), 5373–5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  • Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J., & Rosenzweig, R. F. (2006). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 12), 2729–2736. https://doi.org/10.1099/ijs.0.63610-0
  • Reguera, G., & Kashefi, K. (2019). The electrifying physiology of Geobacter bacteria, 30 years on. In  R.K. Poole (Ed.), Advances in microbial physiology (pp. 1–96). Elsevier. https://doi.org/10.1016/bs.ampbs.2019.02.007
  • Richter, K., Schicklberger, M., & Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied and Environmental Microbiology, 78(4), 913–921. https://doi.org/10.1128/AEM.06803-11
  • Rios-Del Toro, E. E., Valenzuela, E. I., Ramírez, J. E., López-Lozano, N. E., & Cervantes, F. J. (2018). Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environmental Science & Technology Letters, 5(9), 571–577. https://doi.org/10.1021/acs.estlett.8b00330
  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P., & Lovley, D. R. (2014a). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15), 4599–4605. https://doi.org/10.1128/AEM.00895-14
  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K. P., & Lovley, D. R. (2014b). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1), 408–415. https://doi.org/10.1039/C3EE42189A
  • Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E., & Orphan, V. J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science (New York, N.Y.), 351(6274), 703–707. https://doi.org/10.1126/science.aad7154
  • Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M., & Gescher, J. (2009). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 75(24), 7789–7796. https://doi.org/10.1128/AEM.01834-09
  • Shi, L., Squier, T. C., Zachara, J. M., & Fredrickson, J. K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Molecular Microbiology, 65(1), 12–20. https://doi.org/10.1111/j.1365-2958.2007.05783.x
  • Simonte, F., Sturm, G., Gescher, J., & Sturm-Richter, K. (2019). Extracellular electron transfer and biosensors. In F. Harnisch, & D. Holtmann (Eds.), Bioelectrosynthesis (pp. 15–38). Springer International Publishing.
  • Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536
  • Slepova, T. V., Sokolova, T. G., Kolganova, T. V., Tourova, T. P., & Bonch-Osmolovskaya, E. A. (2009). Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 2), 213–217. https://doi.org/10.1099/ijs.0.000620-0
  • Slobodkina, G. B., Panteleeva, A. N., Sokolova, T. G., Bonch-Osmolovskaya, E. A., & Slobodkin, A. I. (2012). Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 4), 890–894. https://doi.org/10.1099/ijs.0.027623-0
  • Slobodkin, A., Reysenbach, A.-L., Strutz, N., Dreier, M., & Wiegel, J. (1997). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Journal of Systematic and Evolutionary Microbiology, 47(2), 541–547.
  • Slobodkin, A. I., Tourova, T. P., Kostrikina, N. A., Lysenko, A. M., German, K. E., Bonch-Osmolovskaya, E. A., & Birkeland, N.-K. (2006). Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 2), 369–372. https://doi.org/10.1099/ijs.0.63694-0
  • Smith, J. A., Lovley, D. R., & Tremblay, P.-L. (2013). Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Applied and Environmental Microbiology, 79(3), 901–907. https://doi.org/10.1128/AEM.02954-12
  • Smith, J. A., Tremblay, P.-L., Shrestha, P. M., Snoeyenbos-West, O. L., Franks, A. E., Nevin, K. P., & Lovley, D. R. (2014). Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens Strain JS-1. Applied and Environmental Microbiology, 80(14), 4331–4340. https://doi.org/10.1128/AEM.01122-14
  • Straub, K., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4), 1458–1460. https://doi.org/10.1128/aem.62.4.1458-1460.1996
  • Sturm, G., Richter, K., Doetsch, A., Heide, H., Louro, R. O., & Gescher, J. (2015). A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. The ISME Journal, 9(8), 1802–1811. https://doi.org/10.1038/ismej.2014.264
  • Sturm-Richter, K., Golitsch, F., Sturm, G., Kipf, E., Dittrich, A., Beblawy, S., Kerzenmacher, S., & Gescher, J. (2015). Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresource Technology, 186, 89–96. https://doi.org/10.1016/j.biortech.2015.02.116
  • Su, G., Zopfi, J., Yao, H., Steinle, L., Niemann, H., & Lehmann, M. F. (2020). Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane by archaea in lake sediments. Limnology and Oceanography, 65(4), 863–875. https://doi.org/10.1002/lno.11354
  • Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science (New York, N.Y.), 330(6009), 1413–1415. https://doi.org/10.1126/science.1196526
  • Tang, Y., Li, Y., Zhang, M., Xiong, P., Liu, L., Bao, Y., & Zhao, Z. (2021). Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds. Environmental Research, 194, 110498. https://doi.org/10.1016/j.envres.2020.110498
  • Tebo, B. M., & Obraztsova, A. Y. (1998). Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiology Letters, 162(1), 193–198. https://doi.org/10.1111/j.1574-6968.1998.tb12998.x
  • Thamdrup, B. (2000). Bacterial manganese and iron reduction in aquatic sediments. In B. Schink (Ed.), Advances in microbial ecology (pp. 41–84). Springer US.
  • Tiwari, S., Singh, S. N., & Garg, S. K. (2014). Bacterial reduction of Cr(VI) and Fe(III) in in vitro conditions. Bioremediation Journal, 18(2), 158–168. https://doi.org/10.1080/10889868.2014.900473
  • Ueki, T. (2021). Cytochromes in extracellular electron transfer in Geobacter. Applied and Environmental Microbiology, 87(10), e03109-20. https://doi.org/10.1128/AEM.03109-20
  • Ueki, T., DiDonato, L. N., & Lovley, D. R. (2017). Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens. FEMS Microbiology Letters, 364.
  • Vali, H., Weiss, B., Li, Y.-L., Sears, S. K., Kim, S. S., Kirschvink, J. L., & Zhang, C. L. (2004). Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16121–16126. https://doi.org/10.1073/pnas.0404040101
  • Vandieken, V., Mußmann, M., Niemann, H., & Jørgensen, B. B. (2006). Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 5), 1133–1139. https://doi.org/10.1099/ijs.0.63639-0
  • Waite, D. W., Chuvochina, M., Pelikan, C., Parks, D. H., Yilmaz, P., Wagner, M., Loy, A., Naganuma, T., Nakai, R., Whitman, W. B., Hahn, M. W., Kuever, J., & Hugenholtz, P. (2020). Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5972–6016. https://doi.org/10.1099/ijsem.0.004213
  • Walker, D. J. F., Martz, E., Holmes, D. E., Zhou, Z., Nonnenmann, S. S., & Lovley, D. R. (2019). The archaellum of Methanospirillum hungatei is electrically conductive. mBio, 10(2), e00579-19. https://doi.org/10.1128/mBio.00579-19
  • Walter, X. A., Picazo, A., Miracle, M. R., Vicente, E., Camacho, A., Aragno, M., & Zopfi, J. (2014). Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Frontiers in Microbiology, 5, 713. https://doi.org/10.3389/fmicb.2014.00713
  • Wang, F., Craig, L., Liu, X., Rensing, C., & Egelman, E. H. (2023). Microbial nanowires: Type IV pili or cytochrome filaments? Trends in Microbiology, 31(4), 384–392. https://doi.org/10.1016/j.tim.2022.11.004
  • Wang, H., Fan, Y., Zhou, M., Wang, W., Li, X., & Wang, Y. (2022). Function of Fe(III)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses. Water Research, 210, 117998. https://doi.org/10.1016/j.watres.2021.117998
  • Wang, Q., Feng, K., & Li, H. (2020b). Nano iron materials enhance food waste fermentation. Bioresource Technology, 315, 123804. https://doi.org/10.1016/j.biortech.2020.123804
  • Wang, S., Wu, Y., An, J., Liang, D., Tian, L., Zhou, L., Wang, X., & Li, N. (2020c). Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery. Environmental Science & Technology, 54(17), 10850–10858. https://doi.org/10.1021/acs.est.0c01404
  • Wang, H., Zhang, H., Zhang, X., Li, Q., Cheng, C., Shen, H., & Zhang, Z. (2020a). Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells. Environmental Research, 186, 109582. https://doi.org/10.1016/j.envres.2020.109582
  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10), 752–764. https://doi.org/10.1038/nrmicro1490
  • Webster, D. P., TerAvest, M. A., Doud, D. F. R., Chakravorty, A., Holmes, E. C., Radens, C. M., Sureka, S., Gralnick, J. A., & Angenent, L. T. (2014). An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosensors & Bioelectronics, 62, 320–324. https://doi.org/10.1016/j.bios.2014.07.003
  • Weelink, S. A. B., Van Doesburg, W., Saia, F. T., Rijpstra, W. I. C., Röling, W. F. M., Smidt, H., & Stams, A. J. M. (2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiology Ecology, 70(3), 575–585. https://doi.org/10.1111/j.1574-6941.2009.00778.x
  • Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E., & Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574), 587–590. https://doi.org/10.1038/nature15733
  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., & Schink, B. (1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362(6423), 834–836. https://doi.org/10.1038/362834a0
  • Wielinga, B., Mizuba, M. M., Hansel, C. M., & Fendorf, S. (2001). Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology, 35(3), 522–527. https://doi.org/10.1021/es001457b
  • Xiao, X., & Yu, H.-Q. (2020). Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Current Opinion in Chemical Biology, 59, 104–110. https://doi.org/10.1016/j.cbpa.2020.06.006
  • Xu, Z., Masuda, Y., Wang, X., Ushijima, N., Shiratori, Y., Senoo, K., & Itoh, H. (2021). Genome-based taxonomic rearrangement of the order geobacterales including the description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Frontiers in Microbiology, 12, 737531. https://doi.org/10.3389/fmicb.2021.737531
  • Yamazaki, S.-I., Kaneko, T., Taketomo, N., Kano, K., & Ikeda, T. (2002). Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer. Bioscience, Biotechnology, and Biochemistry, 66(10), 2100–2106. https://doi.org/10.1271/bbb.66.2100
  • Yang, G., Chen, M., Yu, Z., Lu, Q., & Zhou, S. (2013). Bacillus composti sp. nov. and Bacillus thermophilus sp. nov., two thermophilic, Fe(III)-reducing bacteria isolated from compost. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 8), 3030–3036. https://doi.org/10.1099/ijs.0.049106-0
  • Yang, L., Deng, W., Zhang, Y., Tan, Y., Ma, M., & Xie, Q. (2017). Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes. Biosensors & Bioelectronics, 91, 644–649. https://doi.org/10.1016/j.bios.2017.01.028
  • Yang, G., Guo, J., Zhuang, L., Yuan, Y., & Zhou, S. (2016). Desulfotomaculum ferrireducens sp. nov., a moderately thermophilic sulfate-reducing and dissimilatory Fe(III)-reducing bacterium isolated from compost. International Journal of Systematic and Evolutionary Microbiology, 66(8), 3022–3028. https://doi.org/10.1099/ijsem.0.001139
  • Yan, Z., Joshi, P., Gorski, C. A., & Ferry, J. G. (2018). A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nature Communications, 9(1), 1642. https://doi.org/10.1038/s41467-018-04097-9
  • Yan, Z., Zhang, Y., Wu, H., Yang, M., Zhang, H., Hao, Z., & Jiang, H. (2017). Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Advances, 7(74), 46690–46698. https://doi.org/10.1039/C7RA09274A
  • Yi, H., Nevin, K. P., Kim, B.-C., Franks, A. E., Klimes, A., Tender, L. M., & Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors & Bioelectronics, 24(12), 3498–3503. https://doi.org/10.1016/j.bios.2009.05.004
  • Yilmazel, Y. D., Zhu, X., Kim, K.-Y., Holmes, D. E., & Logan, B. E. (2017). Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry (Amsterdam, Netherlands), 119, 142–149. https://doi.org/10.1016/j.bioelechem.2017.09.012
  • Yuan, C., Liu, T., Li, F., Liu, C., Yu, H., Sun, W., & Huang, W. (2018). Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium. Journal of Environmental Management, 217, 747–753. https://doi.org/10.1016/j.jenvman.2018.04.023
  • Zacharoff, L., Chan, C. H., & Bond, D. R. (2016). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry (Amsterdam, Netherlands), 107, 7–13. https://doi.org/10.1016/j.bioelechem.2015.08.003
  • Zeng, Q., Dong, H., Wang, X., Yu, T., & Cui, W. (2017). Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals. Journal of Hazardous Materials, 331, 88–98. https://doi.org/10.1016/j.jhazmat.2017.01.040
  • Zhang, K., Li, N., Liao, P., Jin, Y., Li, Q., Gan, M., Chen, Y., He, P., Chen, F., Peng, M., & Zhu, J. (2021). Conductive property of secondary minerals triggered Cr(VI) bioreduction by dissimilatory iron reducing bacteria. Environmental Pollution (Barking, Essex: 1987), 286, 117227. https://doi.org/10.1016/j.envpol.2021.117227
  • Zhang, J., Yang, G., Zhou, S., Wang, Y., Yuan, Y., & Zhuang, L. (2013). Fontibacter ferrireducens sp. nov., an Fe(III)-reducing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 3), 925–929. https://doi.org/10.1099/ijs.0.040998-0
  • Zhi, W., Ge, Z., He, Z., & Zhang, H. (2014). Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresource Technology, 171, 461–468. https://doi.org/10.1016/j.biortech.2014.08.096
  • Zhilina, T. N., Zavarzina, D. G., Detkova, E. N., Patutina, E. O., & Kuznetsov, B. B. (2015). Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautotrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella. International Journal of Systematic and Evolutionary Microbiology, 65(8), 2432–2440. https://doi.org/10.1099/ijs.0.000278
  • Zhu, T.-T., Lai, W.-X., Zhang, Y.-B., & Liu, Y.-W. (2022). Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds. The Science of the Total Environment, 804, 149965. https://doi.org/10.1016/j.scitotenv.2021.149965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.