0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of biochar, graphene, carbon nanotubes, and nanoparticles on microbial denitrification: A review

, , , , , , , & ORCID Icon show all

References

  • Adil, S. F., Ashraf, M., Khan, M., Assal, M. E., Shaik, M. R., Kuniyil, M., Al-Warthan, A., Siddiqui, M. R. H., Tremel, W., & Tahir, M. N. (2022). Advances in graphene/inorganic nanoparticle composites for catalytic applications. Chemical Record, 22(7), e202100274. https://doi.org/10.1002/tcr.202100274
  • Albertsson, I., Sjöholm, J., ter Beek, J., Watmough, N. J., Widengren, J., & Ädelroth, P. (2019). Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Scientific Reports, 9(1), 17234. https://doi.org/10.1038/s41598-019-53553-z
  • Ando, Y., Zhao, X., Sugai, T., & Kumar, M. (2004). Growing carbon nanotubes. Materials Today, 7(10), 22–29. https://doi.org/10.1016/s1369-7021(04)00446-8
  • Bardon, C., Poly, F., Piola, F., Pancton, M., Comte, G., Meiffren, G., & Haichar, F. E. (2016). Mechanism of biological denitrification inhibition: Procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration. FEMS Microbiology Ecology, 92(5), fiw034. https://doi.org/10.1093/femsec/fiw034
  • Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. (2002). Carbon nanotubes - The route toward applications. Science, 297(5582), 787–792. https://doi.org/10.1126/science.1060928
  • Blomberg, M. R. A., & Ädelroth, P. (2018). Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. Biochimica et Biophysica Acta. Bioenergetics, 1859(11), 1223–1234. https://doi.org/10.1016/j.bbabio.2018.09.368
  • Cayuela, M. L., Sánchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2013). Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Scientific Reports, 3(1), 1732. https://doi.org/10.1038/srep01732
  • Cheng, R., Wu, C., Cao, Z. X., & Wang, B. J. (2020). QM/MM MD simulations reveal an asynchronous PCET mechanism for nitrite reduction by copper nitrite reductase. Physical Chemistry Chemical Physics: PCCP, 22(36), 20922–20928. https://doi.org/10.1039/d0cp03053h
  • Cheng, Y.-F., Zhang, Q., Li, G.-F., Xue, Y., Zheng, X.-P., Cai, S., Zhang, Z.-Z., & Jin, R.-C. (2019). Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties. Bioresource Technology, 289, 121707. https://doi.org/10.1016/j.biortech.2019.121707
  • Cheng, Y.-F., Zhang, Z.-Z., Li, G.-F., Zhu, B.-Q., Zhang, Q., Liu, Y.-Y., Zhu, W.-Q., Fan, N.-S., & Jin, R.-C. (2019). Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation. Environmental Pollution, 251, 166–174. https://doi.org/10.1016/j.envpol.2019.04.138
  • Chen, Y., Su, X., Wang, Y., Zhao, S., & He, Q. (2019). Short-term responses of denitrification to chlorothalonil in riparian sediments: Process, mechanism and implication. Chemical Engineering Journal, 358, 1390–1398. https://doi.org/10.1016/j.cej.2018.10.148
  • Chen, Y., Su, Y., Zheng, X., Chen, H., & Yang, H. (2012). Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 46(14), 4379–4386. https://doi.org/10.1016/j.watres.2012.05.042
  • Chen, C., Wang, Z., Zhao, M., Yuan, B., Yao, J., Chen, J., Hrynshpan, D., & Savitskaya, T. (2021). A fungus-bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme activity and electron transfer. The Science of the Total Environment, 754, 142109. https://doi.org/10.1016/j.scitotenv.2020.142109
  • Chen, X., Xiang, Z. Z., Ren, Z. M., Huang, X., Li, H., Sun, P. F., & Bai, J. (2021). Effect of zinc oxide nanoparticles on denitrification and denitrifying bacteria communities in typical estuarine sediments. Journal of Ocean University of China, 20(3), 599–607. https://doi.org/10.1007/s11802-021-4468-y
  • Chen, M., Zeng, G., Xu, P., Yan, M., Xiong, W., & Zhou, S. (2017). Interaction of carbon nanotubes with microbial enzymes: Conformational transitions and potential toxicity. Environmental Science: Nano, 4(10), 1954–1960. https://doi.org/10.1039/C7EN00512A
  • Chen, Y. U., Zhang, X. Y., & Liu, W. G. (2022). Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. Chemosphere, 287(Pt 1), 132097. https://doi.org/10.1016/j.chemosphere.2021.132097
  • Chen, G., Zhang, Z., Zhang, Z., & Zhang, R. (2018). Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures. The Science of the Total Environment, 615, 1547–1556. https://doi.org/10.1016/j.scitotenv.2017.09.125
  • Choi, S., Johnston, M. V., Wang, G. S., & Huang, C. P. (2017). Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects. The Science of the Total Environment, 590-591, 809–817. https://doi.org/10.1016/j.scitotenv.2017.03.061
  • Costa, J., Sousa, A. G. G., Carneiro, A. C., Mucha, A. P., Almeida, C. M. R., Magalhães, C., & Baptista, M. S. (2021). Emerging investigator series: Prompt response of estuarine denitrifying bacterial communities to copper nanoparticles at relevant environmental concentrations. Environmental Science: Nano, 8(4), 913–926. https://doi.org/10.1039/D0EN01160F
  • Dell’Acqua, S., Pauleta, S. R., Moura, I., & Moura, J. J. G. (2011). The tetranuclear copper active site of nitrous oxide reductase: The CuZ center. Journal of Biological Inorganic Chemistry, 16(2), 183–194. https://doi.org/10.1007/s00775-011-0753-3
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021
  • Dong, L., Wu, Y., Bian, Y. Z., Zheng, X., Chen, L., Chen, Y. G., & Zhang, X. (2021). Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. Bioresource Technology, 330, 125003. https://doi.org/10.1016/j.biortech.2021.125003
  • Fischer, K., Barbier, G. G., Hecht, H. J., Mendel, R. R., Campbell, W. H., & Schwarz, G. (2005). Structural basis of eukaryotic nitrate reduction: Crystal structures of the nitrate reductase active site. The Plant Cell, 17(4), 1167–1179. https://doi.org/10.1105/tpc.104.029694
  • Francis, A. P., & Devasena, T. (2018). Toxicity of carbon nanotubes: A review. Toxicology and Industrial Health, 34(3), 200–210. https://doi.org/10.1177/0748233717747472
  • French, E., & Iyer-Pascuzzi, A. S. (2018). A role for the gibberellin pathway in biochar-mediated growth promotion. Scientific Reports, 8(1), 5389. https://doi.org/10.1038/s41598-018-23677-9
  • Gao, M., Gao, F., Ma, B., Yu, N., She, Z., Zhao, C., Guo, L., Zhao, Y., Li, S., & Jin, C. (2019). Insights into long-term effects of amino-functionalized multi-walled carbon nanotubes (MWCNTs-NH2) on the performance, enzymatic activity and microbial community of sequencing batch reactor. Environmental Pollution, 254(Pt B), 113118. https://doi.org/10.1016/j.envpol.2019.113118
  • Gao, L., Han, F., Zhang, X., Liu, B., Fan, D., Sun, X., Zhang, Y., Yan, L., & Wei, D. (2020). Simultaneous nitrate and dissolved organic matter removal from wastewater treatment plant effluent in a solid-phase denitrification biofilm reactor. Bioresource Technology, 314, 123714. https://doi.org/10.1016/j.biortech.2020.123714
  • Gao, F., Ma, B., She, Z., Zhao, Y., Guo, L., Jin, C., & Gao, M. (2021). Performance evaluation, enzymatic activity and microbial community of sequencing batch reactor under hydroxyl-functionalized multi-walled carbon nanotubes (MWCNTs-OH) stress. Environmental Technology & Innovation, 21, 101213. https://doi.org/10.1016/j.eti.2020.101213
  • Granger, J., & Ward, B. B. (2003). Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnology and Oceanography, 48(1), 313–318. https://doi.org/10.4319/lo.2003.48.1.0313
  • Guo, F., Luo, Y., Nie, W., Xiong, Z., Yang, X., Yan, J., Liu, T., Chen, M., & Chen, Y. (2023). Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties. Bioresource Technology, 379, 129000. https://doi.org/10.1016/j.biortech.2023.129000
  • Guo, C., Wang, Y., Luo, Y., Chen, X., Lin, Y., & Liu, X. (2018). Effect of graphene oxide on the bioactivities of nitrifying and denitrifying bacteria in aerobic granular sludge. Ecotoxicology and Environmental Safety, 156, 287–293. https://doi.org/10.1016/j.ecoenv.2018.03.036
  • Guo, F., Xu, F., Cai, R., Li, D., Xu, Q., Yang, X., Wu, Z., Wang, Y., He, Q., Ao, L., Vymazal, J., & Chen, Y. (2022). Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. Bioresource Technology, 347, 126664. https://doi.org/10.1016/j.biortech.2021.126664
  • Han, X., Guo, Q., Lang, Y., Li, S., Li, Y., Guo, Z., Hu, J., Wei, R., Tian, L., & Wan, Y. (2020). Seasonal and long-term trends of sulfate, nitrate, and ammonium in PM2.5 in Beijing: Implication for air pollution control. Environmental Science and Pollution Research International, 27(19), 23730–23741. https://doi.org/10.1007/s11356-020-08697-1
  • Hassanpour, B., Riazi, S. F., Menzies Pluer, E. G., Geohring, L. D., Guzman, C. D., & Steenhuis, T. S. (2020). Biochar acting as an electron acceptor reduces nitrate removal in woodchip denitrifying bioreactors. Ecological Engineering, 149, 105724. https://doi.org/10.1016/j.ecoleng.2020.105724
  • Haubner, K., Murawski, J., Olk, P., Eng, L. M., Ziegler, C., Adolphi, B., & Jaehne, E. (2010). The route to functional graphene oxide. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 11(10), 2131–2139. https://doi.org/10.1002/cphc.201000132
  • Hill, R. A., Hunt, J., Sanders, E., Tran, M., Burk, G. A., Mlsna, T. E., & Fitzkee, N. C. (2019). Effect of biochar on microbial growth: A metabolomics and bacteriological investigation in E. coli. Environmental Science & Technology, 53(5), 2635–2646. https://doi.org/10.1021/acs.est.8b05024
  • Hino, T., Matsumoto, Y., Nagano, S., Sugimoto, H., Fukumori, Y., Murata, T., Iwata, S., & Shiro, Y. (2010). Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science, 330(6011), 1666–1670. https://doi.org/10.1126/science.1195591
  • Huang, S., Li, H. M., Liu, Y., Yang, L. Y., Wang, D., & Xiao, Q. (2020). Investigations of conformational structure and enzymatic activity of trypsin after its binding interaction with graphene oxide. Journal of Hazardous Materials, 392, 122285. https://doi.org/10.1016/j.jhazmat.2020.122285
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666–686. https://doi.org/10.1039/c1cs15078b
  • Huang, X., Weisener, C. G., Ni, J., He, B., Xie, D., & Li, Z. (2020). Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresource Technology, 312, 123597. https://doi.org/10.1016/j.biortech.2020.123597
  • Hu, W. Y., Wu, Y., Bian, Y. Z., Zheng, X., Chen, Y. X., Dong, L., & Chen, Y. G. (2021). Joint effects of carbon nanotubes and copper oxide nanoparticles on fermentation metabolism towards Saccharofermentans acetigenes: Enhancing environmental adaptability and transcriptional expression. Bioresource Technology, 336, 125318. https://doi.org/10.1016/j.biortech.2021.125318
  • Hu, Y., Wu, G., Li, R., Xiao, L., & Zhan, X. (2020). Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Research, 179, 115914. https://doi.org/10.1016/j.watres.2020.115914
  • Ji, C., Han, Z., Zheng, F., Wu, S., Wang, J., Wang, J., Zhang, H., Zhang, Y., Liu, S., Li, S., & Zou, J. (2022). Biochar reduced soil nitrous oxide emissions through suppressing fungal denitrification and affecting fungal community assembly in a subtropical tea plantation. Agriculture, Ecosystems & Environment, 326, 107784. https://doi.org/10.1016/j.agee.2021.107784
  • Jiang, M., Feng, L. Y., Zheng, X., & Chen, Y. G. (2020). Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Research, 180, 115916. https://doi.org/10.1016/j.watres.2020.115916
  • Jiang, H., Zhang, Q. Q., Liu, W. J., Zhang, J. Y., Zhao, T., & Xu, Z. F. (2021). Climatic and anthropogenic driving forces of the nitrogen cycling in a subtropical river basin. Environmental Research, 194, 110721. https://doi.org/10.1016/j.envres.2021.110721
  • Johnston, E. M., Carreira, C., Dell’Acqua, S., Dey, S. G., Pauleta, S. R., Moura, I., & Solomon, E. I. (2017). Spectroscopic Definition of the CuZ° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism. Journal of the American Chemical Society, 139(12), 4462–4476. https://doi.org/10.1021/jacs.6b13225
  • Kabuba, J., Lephallo, J., & Rutto, H. (2022). Comparison of various technologies used to eliminate nitrogen from wastewater: A review. Journal of Water Process Engineering, 48, 102885. https://doi.org/10.1016/j.jwpe.2022.102885
  • Kanter, D. R., Chodos, O., Nordland, O., Rutigliano, M., & Winiwarter, W. (2020). Gaps and opportunities in nitrogen pollution policies around the world. Nature Sustainability, 3(11), 956–963. https://doi.org/10.1038/s41893-020-0577-7
  • Kazakis, N., Matiatos, I., Ntona, M.-M., Bannenberg, M., Kalaitzidou, K., Kaprara, E., Mitrakas, M., Ioannidou, A., Vargemezis, G., & Voudouris, K. (2020). Origin, implications and management strategies for nitrate pollution in surface and ground waters of Anthemountas basin based on a delta15N-NO3- and delta18O-NO3- isotope approach. The Science of the Total Environment, 724, 138211. https://doi.org/10.1016/j.scitotenv.2020.138211
  • Khurana, I., Saxena, A., Bharti, Khurana, J. M., Rai, P. K. (2017). Removal of dyes using graphene-based composites: A review. Water, Air, & Soil Pollution, 228(5), 180. https://doi.org/10.1007/s11270-017-3361-1
  • Kim, M.-S., Lim, B. R., Jeon, P., Hong, S., Jeon, D., Park, S. Y., Hong, S., Yoo, E. J., Kim, H. S., Shin, S., & Yoon, J. K. (2023). Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes. Water Research, 230, 119470. https://doi.org/10.1016/j.watres.2022.119470
  • Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 77(14), 4924–4930. https://doi.org/10.1128/AEM.00148-11
  • Lambeck, I. C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J. C., Hille, R., & Schwarz, G. (2012). Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. The Journal of Biological Chemistry, 287(7), 4562–4571. https://doi.org/10.1074/jbc.M111.323113
  • Lataf, A., Jozefczak, M., Vandecasteele, B., Viaene, J., Schreurs, S., Carleer, R., Yperman, J., Marchal, W., Cuypers, A., & Vandamme, D. (2022). The effect of pyrolysis temperature and feedstock on biochar agronomic properties. Journal of Analytical and Applied Pyrolysis, 168, 105728. https://doi.org/10.1016/j.jaap.2022.105728
  • Liao, J. Y., Hu, A., Zhao, Z. W., Liu, X. R., Jiang, C., & Zhang, Z. H. (2021). Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry, 156, 108212. https://doi.org/10.1016/j.soilbio.2021.108212
  • Liao, Y., Jiang, Z., Li, S., Dang, Z., Zhu, X., & Ji, G. (2022). Archaeal and bacterial ecological strategies in sediment denitrification under the influence of graphene oxide and different temperatures. The Science of the Total Environment, 838(Pt 4), 156549. https://doi.org/10.1016/j.scitotenv.2022.156549
  • Liao, Y., Li, S., Zhu, X., Dang, Z., Tang, S., & Ji, G. (2021). The promotion and inhibition effect of graphene oxide on the process of microbial denitrification at low temperature. Bioresource Technology, 340, 125636. https://doi.org/10.1016/j.biortech.2021.125636
  • Li, Q., Jia, Z., Fu, J., Yang, X., Shi, X., & Chen, R. (2022). Biochar enhances partial denitrification/anammox by sustaining high rates of nitrate to nitrite reduction. Bioresource Technology, 349, 126869. https://doi.org/10.1016/j.biortech.2022.126869
  • Li, J., Li, Y., Chen, P., Sathishkumar, K., Lu, Y., Naraginti, S., Wu, Y., & Wu, H. (2022). Biological mediated synthesis of reduced graphene oxide (rGO) as a potential electron shuttle for facilitated biological denitrification: Insight into the electron transfer process. Journal of Environmental Chemical Engineering, 10(5), 108225. https://doi.org/10.1016/j.jece.2022.108225
  • Li, D., Li, B., Wang, Q., Hou, N., Li, C., & Cheng, X. (2016). Toxicity of TiO2 nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in activated sludge. Chemosphere, 144, 1334–1341. https://doi.org/10.1016/j.chemosphere.2015.10.002
  • Li, Y., Lu, Y., Zhang, W., Wu, H., Zhang, C., Wang, L., Niu, L., & Zhang, H. (2020). Enhanced biological nitrogen removal from sediment by graphene derivative-mediated community assembly. Bioresource Technology, 306, 123187. https://doi.org/10.1016/j.biortech.2020.123187
  • Li, H., Meng, J., Liu, Z., Lan, Y., Yang, X., Huang, Y., He, T., & Chen, W. (2021). Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study. The Science of the Total Environment, 787, 147591. https://doi.org/10.1016/j.scitotenv.2021.147591
  • Liu, C. L., Liang, Z. J., Yang, C., Cui, F. Y., & Zhao, Z. W. (2022). Nitrite-enhanced N-nitrosamines formation during the simulated tetracycline polluted groundwater chlorination: Experimental and theoretical investigation. Chemical Engineering Journal, 431, 133363. https://doi.org/10.1016/j.cej.2021.133363
  • Liu, N., Liao, P., Zhang, J., Zhou, Y., Luo, L., Huang, H., & Zhang, L. (2020). Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost. The Science of the Total Environment, 739, 139987. https://doi.org/10.1016/j.scitotenv.2020.139987
  • Liu, L. X., Li, A. H., Shi, C. J., Hrynsphan, D., Tatsiana, S., Wang, Z. Y., & Chen, J. (2024). Advancements and challenges in protein purification techniques for denitrifying enzymes: A path to effective nitrogen removal and reduced N2O emissions. Critical Reviews in Environmental Science and Technology, 54, 1–23. https://doi.org/10.1080/10643389.2024.2333716
  • Liu, Y., Liu, S., Yang, Z., & Xiao, L. (2021). Synergetic effects of biochars and denitrifier on nitrate removal. Bioresource Technology, 335, 125245. https://doi.org/10.1016/j.biortech.2021.125245
  • Liu, S., Miao, L., Li, B., Shan, S., Li, D., & Hou, J. (2023). Long-term effects of Ag NPs on denitrification in sediment: Importance of Ag NPs exposure ways in aquatic ecosystems. Water Research, 242, 120283. https://doi.org/10.1016/j.watres.2023.120283
  • Liu, H., Sun, Y., He, X., Zhang, H., Wei, J., & Zhu, L. (2021). Microbiological synthesis of denitrifying bacteria-iron nanopartical composite material and its eminent performance in removal of nitrate-N. Separation and Purification Technology, 267, 118663. https://doi.org/10.1016/j.seppur.2021.118663
  • Liu, S., Wang, C., Hou, J., Wang, P., & Miao, L. (2020). Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors. Water Research, 171, 115436. https://doi.org/10.1016/j.watres.2019.115436
  • Liu, S., Wang, M., Li, T., & Chen, Q. (2020). Response of an aerobic denitrifier to titanium dioxide nanoparticles exposure. Environmental Technology, 41(11), 1446–1454. https://doi.org/10.1080/09593330.2018.1537310
  • Liu, W., Worms, I., & Slaveykova, V. I. (2020). Interaction of silver nanoparticles with antioxidant enzymes. Environmental Science: Nano, 7(5), 1507–1517. https://doi.org/10.1039/C9EN01284B
  • Luo, J., Lin, L., Liu, C., Jia, C., Chen, T., Yang, Y., Shen, M., Shang, H., Zhou, S., Huang, M., Wang, Y., Zhou, D., Fan, J., Clark, J. H., Zhang, S., & Zhu, X. (2020). Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy. Journal of Hazardous Materials, 399, 123055. https://doi.org/10.1016/j.jhazmat.2020.123055
  • Lv, S., Zheng, F., Wang, Z., Hayat, K., Veiga, M. C., Kennes, C., & Chen, J. (2024). Unveiling novel pathways and key contributors in the nitrogen cycle: Validation of enrichment and taxonomic characterization of oxygenic denitrifying microorganisms in environmental samples. The Science of the Total Environment, 908, 168339. https://doi.org/10.1016/j.scitotenv.2023.168339
  • Ma, B., Gao, F., Yu, N., Zhao, C., Li, S., She, Z., Guo, L., Jin, C., Zhao, Y., & Gao, M. (2019). Long-term impacts of carboxyl functionalized multi-walled carbon nanotubes on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor. Bioresource Technology, 286, 121382. https://doi.org/10.1016/j.biortech.2019.121382
  • Mahalingam, S., Abdullah, H., Shaari, S., & Muchtar, A. (2016). Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes. Ionics, 22(10), 1985–1997. https://doi.org/10.1007/s11581-016-1724-z
  • Mao, Q., Bao, J., Du, J., He, T., Zhang, Y., & Cheng, B. (2023). Biochar enhanced the stability and microbial metabolic activity of aerobic denitrification system under long-term oxytetracycline stress. Bioresource Technology, 382, 129188. https://doi.org/10.1016/j.biortech.2023.129188
  • Matsumoto, Y., Tosha, T., Pisliakov, A. V., Hino, T., Sugimoto, H., Nagano, S., Sugita, Y., & Shiro, Y. (2012). Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 19(2), 238–245. https://doi.org/10.1038/nsmb.2213
  • Ma, B., Wang, S., Li, Z., Gao, M., Li, S., Guo, L., She, Z., Zhao, Y., Zheng, D., Jin, C., Wang, X., & Gao, F. (2017). Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure. Bioresource Technology, 225, 377–385. https://doi.org/10.1016/j.biortech.2016.11.130
  • Ma, B., Yu, N., Han, Y., Gao, M., Wang, S., Li, S., Guo, L., She, Z., Zhao, Y., Jin, C., & Gao, F. (2018). Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor. Journal of Environmental Management, 222, 475–482. https://doi.org/10.1016/j.jenvman.2018.05.089
  • Mohajerani, A., Burnett, L., Smith, J. V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk, S., & Abdul Kadir, A. (2019). Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials, 12(19), 3052. https://doi.org/10.3390/ma12193052
  • Pan, M., Zhang, Y., Shan, C., Zhang, X., Gao, G., & Pan, B. (2017). Flat graphene-enhanced electron transfer involved in redox reactions. Environmental Science & Technology, 51(15), 8597–8605. https://doi.org/10.1021/acs.est.7b01762
  • Pauleta, S. R., Dell’Acqua, S., & Moura, I. (2013). Nitrous oxide reductase. Coordination Chemistry Reviews, 257(2), 332–349. https://doi.org/10.1016/j.ccr.2012.05.026
  • Pinakoulaki, E., & Varotsis, C. (2008). Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase. Journal of Inorganic Biochemistry, 102(5–6), 1277–1287. https://doi.org/10.1016/j.jinorgbio.2008.01.014
  • Prajitha, N., Athira, S. S., & Mohanan, P. V. (2019). Bio-interactions and risks of engineered nanoparticles. Environmental Research, 172, 98–108. https://doi.org/10.1016/j.envres.2019.02.003
  • Prudêncio, M., Eady, R. R., & Sawers, G. (2001). Catalytic and spectroscopic analysis of blue copper-containing nitrite reductase mutants altered in the environment of the type 2 copper centre: implications for substrate interaction. The Biochemical Journal, 353(Pt 2), 259–266. https://doi.org/10.1042/0264-6021:3530259
  • Rasmussen, T., Brittain, T., Berks, B. C., Watmough, N. J., & Thomson, A. J. (2005). Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus. Dalton Transactions, 21, 3501–3506. https://doi.org/10.1039/b501846c
  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123–125. https://doi.org/10.1126/science.1176985
  • Rees, D. C., Johnson, E., & Lewinson, O. (2009). ABC transporters: The power to change. Nature Reviews. Molecular Cell Biology, 10(3), 218–227. https://doi.org/10.1038/nrm2646
  • Ren, C., Bai, R., Chen, W., Li, J., Zhou, X., Tian, X., & Zhao, F. (2023). Advances in nanomaterial-microbe coupling system for removal of emerging contaminants. Chemical Research in Chinese Universities, 39(3), 389–394. https://doi.org/10.1007/s40242-023-3053-x
  • Ren, S., Usman, M., Tsang, D. C. W., O-Thong, S., Angelidaki, I., Zhu, X., Zhang, S., & Luo, G. (2020). Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environmental Science & Technology, 54(9), 5755–5766. https://doi.org/10.1021/acs.est.0c00112
  • Rezaee, A., Safari, M., & Hossini, H. (2015). Bioelectrochemical denitrification using carbon felt/multiwall carbon nanotube. Environmental Technology, 36(5–8), 1057–1062. https://doi.org/10.1080/09593330.2014.974680
  • Roman, F. F., Diaz de Tuesta, J. L., Sanches, F. K. K., Silva, A. S., Marin, P., Machado, B. F., Serp, P., Pedrosa, M., Silva, A. M. T., Faria, J. L., & Gomes, H. T. (2023). Selective denitrification of simulated oily wastewater by oxidation using Janus-structured carbon nanotubes. Catalysis Today, 420, 114001. https://doi.org/10.1016/j.cattod.2023.01.008
  • Sánchez, C., & Minamisawa, K. (2018). Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1type (NirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiology Letters, 365(5), fny015. https://doi.org/10.1093/femsle/fny015
  • Sato, N., Ishii, S., Sugimoto, H., Hino, T., Fukumori, Y., Sako, Y., Shiro, Y., & Tosha, T. (2014). Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins, 82(7), 1258–1271. https://doi.org/10.1002/prot.24492
  • Sevilla, M., Ferrero, G. A., Diez, N., & Fuertes, A. B. (2018). One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon, 131, 193–200. https://doi.org/10.1016/j.carbon.2018.02.021
  • Shiro, Y., Sugimoto, H., Tosha, T., Nagano, S., & Hino, T. (2012). Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1593), 1195–1203. https://doi.org/10.1098/rstb.2011.0310
  • Sparacino-Watkins, C., Stolz, J. F., & Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 43(2), 676–706. https://doi.org/10.1039/c3cs60249d
  • Suárez-Iglesias, O., Collado, S., Oulego, P., & Díaz, M. (2017). Graphene-family nanomaterials in wastewater treatment plants. Chemical Engineering Journal, 313, 121–135. https://doi.org/10.1016/j.cej.2016.12.022
  • Sun, J., Huang, Y., Li, H., Qiu, Y., Zhang, J., Hu, K., Li, J., & Ding, Y. (2021). Silver nanoparticle-loaded graphitic carbon nitride/multiwall carbon nanotube composite with improved denitrification to nitrogen gas for the photocatalytic removal of aqueous ammonia nitrogen. Environmental Technology & Innovation, 24, 101815. https://doi.org/10.1016/j.eti.2021.101815
  • Su, Y. L., Zheng, X., Chen, A. H., Chen, Y. G., He, G. Y., & Chen, H. Q. (2015). Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chemical Engineering Journal, 279, 47–55. https://doi.org/10.1016/j.cej.2015.05.005
  • Su, Y. L., Zheng, X., Chen, Y. G., Li, M., & Liu, K. (2015). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5(1), 15824. https://doi.org/10.1038/srep15824
  • Tang, M., Jiang, J., Lv, Q., Yang, B., Zheng, M., Gao, X., Han, J., Zhang, Y., & Yang, Y. (2020). Denitrification performance of Pseudomonas fluorescens Z03 immobilized by graphene oxide-modified polyvinyl-alcohol and sodium alginate gel beads at low temperature. Royal Society Open Science, 7(3), 191542. https://doi.org/10.1098/rsos.191542
  • Wan, R., Chen, Y., Zheng, X., Su, Y., & Li, M. (2016). Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environmental Science & Technology, 50(18), 9915–9922. https://doi.org/10.1021/acs.est.5b05850
  • Wang, N., Awasthi, M. K., Pan, J., Jiang, S., Wan, F., Lin, X., Yan, B., Zhang, J., Zhang, L., Huang, H., & Li, H. (2022). Effects of biochar and biogas residue amendments on N2O emission, enzyme activities and functional genes related with nitrification and denitrification during rice straw composting. Bioresource Technology, 357, 127359. https://doi.org/10.1016/j.biortech.2022.127359
  • Wang, X., Chen, Y.-P., Liu, S.-Y., Guo, J.-S., Fang, F., & Yan, P. (2023). The effect of silver nanoparticles on aerobic denitrifying bacteria during biological nitrogen removal: A new perspective based on morphological effects. Chemical Engineering Journal, 471, 144538. https://doi.org/10.1016/j.cej.2023.144538
  • Wang, Z., Chen, C., Liu, H., Hrynshpan, D., Savitskaya, T., Chen, J., & Chen, J. (2019). Effects of carbon nanotube on denitrification performance of Alcaligenes sp. TB: Promotion of electron generation, transportation and consumption. Ecotoxicology and Environmental Safety, 183, 109507. https://doi.org/10.1016/j.ecoenv.2019.109507
  • Wang, Z., Chen, C., Liu, H., Hrynshpan, D., Savitskaya, T., Chen, J., & Chen, J. (2020). Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. The Science of the Total Environment, 708, 135063. https://doi.org/10.1016/j.scitotenv.2019.135063
  • Wang, J. L., & Chu, L. B. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology Advances, 34(6), 1103–1112. https://doi.org/10.1016/j.biotechadv.2016.07.001
  • Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S., & Chen, J. (2021a). Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere, 281, 130718. https://doi.org/10.1016/j.chemosphere.2021.130718
  • Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S., & Chen, J. (2021b). Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. Bioresource Technology, 327, 124785. https://doi.org/10.1016/j.biortech.2021.124785
  • Wang, Z., Fu, W., Hu, L., Zhao, M., Guo, T., Hrynsphan, D., Tatsiana, S., & Chen, J. (2021). Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator. Science of The Total Environment, 781, 146686. https://doi.org/10.1016/j.scitotenv.2021.146686
  • Wang, N., Gao, J., Liu, Y., Wang, Q., Zhuang, X., & Zhuang, G. (2021). Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. Chemosphere, 274, 129970. https://doi.org/10.1016/j.chemosphere.2021.129970
  • Wang, C., Liu, S. Q., Hou, J., Wang, P. F., Miao, L. Z., & Li, T. F. (2020). Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments. Journal of Hazardous Materials, 389, 122130. https://doi.org/10.1016/j.jhazmat.2020.122130
  • Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., & Cui, D. (2010). Biocompatibility of graphene oxide. Nanoscale Research Letters, 6(1), 8. https://doi.org/10.1007/s11671-010-9751-6
  • Wang, X., Yin, R., Zeng, L., & Zhu, M. (2019). A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environmental Pollution, 253, 100–110. https://doi.org/10.1016/j.envpol.2019.06.067
  • Wang, X., Zhu, M., Li, N., Du, S., Yang, J., & Li, Y. (2018). Effects of CeO2 nanoparticles on bacterial community and molecular ecological network in activated sludge system. Environmental Pollution, 238, 516–523. https://doi.org/10.1016/j.envpol.2018.03.034
  • Weldon, S., Rasse, D. P., Budai, A., Tomic, O., & Dörsch, P. (2019). The effect of a biochar temperature series on denitrification: Which biochar properties matter? Soil Biology and Biochemistry, 135, 173–183. https://doi.org/10.1016/j.soilbio.2019.04.018
  • Wu, J., Bai, Y., Lu, B., Zhao, W., Forstner, C., Menzies, N. W., Bertsch, P. M., Wang, P., & Kopittke, P. M. (2020). Silver sulfide nanoparticles reduce nitrous oxide emissions by inhibiting denitrification in the earthworm gut. Environmental Science & Technology, 54(18), 11146–11154. https://doi.org/10.1021/acs.est.0c01241
  • Wu, L., Wei, W., Xu, J., Chen, X., Liu, Y., Peng, L., Wang, D., & Ni, B.-J. (2021). Denitrifying biofilm processes for wastewater treatment: Developments and perspectives. Environmental Science: Water Research & Technology, 7(1), 40–67. https://doi.org/10.1039/D0EW00576B
  • Wu, Z., Xu, F., Yang, C., Su, X., Guo, F., Xu, Q., Peng, G., He, Q., & Chen, Y. (2019). Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: A molecular and electrochemical mechanism. Bioresource Technology, 275, 297–306. https://doi.org/10.1016/j.biortech.2018.12.058
  • Wu, P., Zhang, X. X., Wang, C. C., Liu, W. R., & Faustin, F. (2020). Feasibility of applying intermittent aeration and baffles for achieving granular nitritation in a continuous short-cut denitrifying phosphorus removal system. The Science of the Total Environment, 715, 137023. https://doi.org/10.1016/j.scitotenv.2020.137023
  • Wu, M., Zhang, Z., Zhang, X., Dong, L., Liu, C., & Chen, Y. (2022). Propionibacterium freudenreichii-assisted approach reduces N2O emission and improves denitrification via promoting substrate uptake and metabolism. Environmental Science & Technology, 56(23), 16895–16906. https://doi.org/10.1021/acs.est.2c05674
  • Wuebbles, D. J. (2009). Atmosphere. Nitrous oxide: No laughing matter. Science, 326(5949), 56–57. https://doi.org/10.1126/science.1179571
  • Xia, F., Zhang, Z., Zhang, Q., Huang, H., & Zhao, X. (2024). Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. The Science of the Total Environment, 911, 168734. https://doi.org/10.1016/j.scitotenv.2023.168734
  • Xiang, L., Liu, S., Ye, S., Yang, H., Song, B., Qin, F., Shen, M., Tan, C., Zeng, G., & Tan, X. (2021). Potential hazards of biochar: The negative environmental impacts of biochar applications. Journal of Hazardous Materials, 420, 126611. https://doi.org/10.1016/j.jhazmat.2021.126611
  • Yang, J. X., Feng, L., Pi, S. S., Cui, D., Ma, F., Zhao, H. P., & Li, A. (2020). A critical review of aerobic denitrification: Insights into the intracellular electron transfer. The Science of the Total Environment, 731, 139080. https://doi.org/10.1016/j.scitotenv.2020.139080
  • Yan, C., Huang, J., Cao, C., Lin, X., Wang, Y., & Qian, X. (2022). Nitrogen metabolism in different configuration design constructed wetlands under exposure of graphene oxide. Chemical Engineering Journal, 443, 136454. https://doi.org/10.1016/j.cej.2022.136454
  • Yan, C., Huang, J., Wang, Y., Lin, X., Cao, C., & Qian, X. (2022). Assessment on the treatment of nitrogen contaminant by constructed wetland exposed to different concentrations of graphene oxide. Journal of Cleaner Production, 338, 130567. https://doi.org/10.1016/j.jclepro.2022.130567
  • Yan, L. L., Zheng, Y. Q., Chen, W. T., Liu, S., Yin, M. Y., Jiang, J. S., & Yang, M. Y. (2022). Step feed mode synergistic mixed carbon source to improve sequencing batch reactor simultaneous nitrification and denitrification efficiency of domestic wastewater treatment. Bioresource Technology, 358, 127440. https://doi.org/10.1016/j.biortech.2022.127440
  • Ye, J., Gao, H., Domingo-Félez, C., Wu, J., Zhan, M., Yu, R., & Smets, B. F. (2021). Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. Bioresource Technology, 327, 124797. https://doi.org/10.1016/j.biortech.2021.124797
  • Ye, J., Gao, H., Wu, J., Yang, G., Duan, L., & Yu, R. (2022). Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission. Environmental Pollution, 311, 119930. https://doi.org/10.1016/j.envpol.2022.119930
  • Zhang, L., Bill, E., Kroneck, P. M. H., & Einsle, O. (2021). Histidine-gated proton-coupled electron transfer to the CuA site of nitrous oxide reductase. Journal of the American Chemical Society, 143(2), 830–838. https://doi.org/10.1021/jacs.0c10057
  • Zhang, Y.-L., Guo, L., Xia, H., Chen, Q.-D., Feng, J., & Sun, H.-B. (2014). Photoreduction of graphene oxides: Methods, properties, and applications. Advanced Optical Materials, 2(1), 10–28. https://doi.org/10.1002/adom.201300317
  • Zhang, X. N., Ward, B. B., & Sigman, D. M. (2020). Global nitrogen cycle: Critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews, 120(12), 5308–5351. https://doi.org/10.1021/acs.chemrev.9b00613
  • Zhang, Y., Yang, G., Lu, C., Xu, H., Wu, J., Zhou, Z., Song, Y., & Guo, J. (2022). Insight into the enhancing mechanism of silica nanoparticles on denitrification: Effect on electron transfer and microbial metabolism. Chemosphere, 300, 134510. https://doi.org/10.1016/j.chemosphere.2022.134510
  • Zhang, Y., Zhang, Z. Z., & Chen, Y. G. (2021). Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environmental Science & Technology, 55(12), 8068–8078. https://doi.org/10.1021/acs.est.1c01976
  • Zhang, R. R., Zhang, R. L., Zimmerman, A. R., Wang, H. L., & Gao, B. (2023). Applications, impacts, and management of biochar persistent free radicals: A review*. Environmental Pollution, 327, 121543. https://doi.org/10.1016/j.envpol.2023.121543
  • Zhao, S., Su, X., Wang, Y., Yang, X., Bi, M., He, Q., & Chen, Y. (2020). Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere, 245, 125394. https://doi.org/10.1016/j.chemosphere.2019.125394
  • Zheng, X., Su, Y. L., Chen, Y. G., Huang, H. N., & Shen, Q. T. (2018). Global transcriptional responses of denitrifying bacteria to functionalized single-walled carbon nanotubes revealed by weighted gene-coexpression network analysis. The Science of the Total Environment, 613–614, 1240–1249. https://doi.org/10.1016/j.scitotenv.2017.09.193
  • Zheng, X., Su, Y. L., Chen, Y. G., Wan, R., Li, M., Huang, H. N., & Li, X. (2016). Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 6, 27748. https://doi.org/10.1038/srep27748
  • Zheng, X., Su, Y., Chen, Y., Wan, R., Liu, K., Li, M., & Yin, D. (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology, 48(23), 13800–13807. https://doi.org/10.1021/es504251v
  • Zheng, X., Su, Y., Chen, Y., Wan, R., Li, M., Wei, Y., & Huang, H. (2014). Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Scientific Reports, 4(1), 5653. https://doi.org/10.1038/srep05653
  • Zheng, X., Wang, J., Chen, Y. G., & Wei, Y. Y. (2018). Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. Journal of Hazardous Materials, 344, 291–298. https://doi.org/10.1016/j.jhazmat.2017.10.028
  • Zhou, C., Wang, Z., Ontiveros-Valencia, A., Long, M., Lai, C.-Y., Zhao, H.-P., Xia, S., & Rittmann, B. E. (2017). Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Applied Catalysis B: Environmental, 206, 461–470. https://doi.org/10.1016/j.apcatb.2017.01.068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.