0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Full life cycle of uranium toward ore-soil-root-shoot system: A comprehensive review

, ORCID Icon, , , , , & show all

References

  • Akash, S., Sivaprakash, B., Raja, V. C. V., Rajamohan, N., & Muthusamy, G. (2022). Remediation techniques for uranium removal from polluted environment-Review on methods, mechanism and toxicology. Environmental Pollution, 302, 119068. https://doi.org/10.1016/j.envpol.2022.119068
  • Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. https://doi.org/10.1126/science.1261071
  • Arnold, C. (2014). Once upon a mine: The legacy of uranium on the Navajo Nation. Environmental Health Perspectives, 122(2), A44–49. https://doi.org/10.1289/ehp.122-A44
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068
  • Asic, A., Kurtovic-Kozaric, A., Besic, L., Mehinovic, L., Hasic, A., Kozaric, M., Hukic, M., & Marjanovic, D. (2017). Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. Environmental Research, 156, 665–673. https://doi.org/10.1016/j.envres.2017.04.032
  • Bai, H., Hu, B. T., Wang, C. G., Bao, S. H., Sai, G., Xu, X., Zhang, S., & Li, Y. H. (2017). Assessment of radioactive materials and heavy metals in the surface soil around the Bayanwula prospective uranium mining area in China. International Journal of Environmental Research and Public Health, 14(3), 300. https://doi.org/10.3390/ijerph14030300
  • Baker, A. J. M., Mcgrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources Conservation and Recycling, 11(1–4), 41–49. https://doi.org/10.1016/0921-3449(94)90077-9
  • Bastrakov, E. N., Jaireth, S., & Mernagh, T. P. (2010). Solubility of uranium in hydrothermal fluids at 25-300 °C: Implications for the formation of uranium deposits. Geoscience Australia Record.
  • Beaugelin-Seiller, K., Garnier-Laplace, J., Della-Vedova, C., Métivier, J.-M., Lepage, H., Mousseau, T. A., & Møller, A. P. (2020). Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone. Scientific Reports, 10(1), 14083. https://doi.org/10.1038/s41598-020-70699-3
  • Beliaev, D. V., Tereshonok, D. V., Lunkova, N. F., Baranova, E. N., Osipova, E. S., Lisovskii, S. V., Raldugina, G. N., & Kuznetsov, V. V. (2021). Expression of cytochrome c3 from Desulfovibrio vulgaris in plant leaves enhances uranium uptake and tolerance of Tobacco. International Journal of Molecular Sciences, 22(23), 12622. https://doi.org/10.3390/ijms222312622
  • Berry, Z. C., Emery, N. C., Gotsch, S. G., & Goldsmith, G. R. (2019). Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant, Cell & Environment, 42(2), 410–423. https://doi.org/10.1111/pce.13439
  • Bešić, L., Muhović, I., Mrkulić, F., Spahić, L., Omanović, A., & Kurtovic-Kozaric, A. (2018). Meta-analysis of depleted uranium levels in the Middle East region. Journal of Environmental Radioactivity, 192, 67–74. https://doi.org/10.1016/j.jenvrad.2018.06.004
  • Bhaduri, A. M., & Fulekar, M. H. (2012). Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/Technology, 11(1), 55–69. https://doi.org/10.1007/s11157-011-9251-x
  • Bigalke, M., Ulrich, A., Rehmus, A., & Keller, A. (2017). Accumulation of cadmium and uranium in arable soils in Switzerland. Environmental Pollution, 221, 85–93. https://doi.org/10.1016/j.envpol.2016.11.035
  • Bone, S. E., Dynes, J. J., Cliff, J., & Bargar, J. R. (2017). Uranium(IV) adsorption by natural organic matter in anoxic sediments. Proceedings of the National Academy of Sciences of the United States of America, 114(4), 711–716. https://doi.org/10.1073/pnas.1611918114
  • Burraco, P., & Orizaola, G. (2022). Ionizing radiation and melanism in Chornobyl tree frogs. Evolutionary Applications, 15(9), 1469–1479. https://doi.org/10.1111/eva.13476
  • Butler, A. D., Wynter, M., Medina, V. F., & Bednar, A. J. (2016). Depleted uranium toxicity, accumulation, and uptake in Cynodon dactylon (Bermuda) and Aristida purpurea (Purple Threeawn). Bulletin of Environmental Contamination and Toxicology, 96(6), 714–719. https://doi.org/10.1007/s00128-016-1784-9
  • Cai, Y. Q., Zhang, J. D., Li, Z. Y., Guo, Q. Y., Song, J. Y., Fan, H. H., Liu, W. S., Qi, F. C., & Zhang, M. L. (2015). Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica-English Edition, 89(3), 918–937. https://doi.org/10.1111/1755-6724.12490
  • Carvalho, F. P., & Oliveira, J. M. (2010). Uranium isotopes in the Balkan’s environment and foods following the use of depleted uranium in the war. Environment International, 36(4), 352–360. https://doi.org/10.1016/j.envint.2010.02.003
  • Cassina, L., Tassi, E., Pedron, F., Petruzzelli, G., Ambrosini, P., & Barbafieri, M. (2012). Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. Journal of Hazardous Materials, 231-232, 36–42. https://doi.org/10.1016/j.jhazmat.2012.06.031
  • Chatterjee, S., Sarma, M. K., Deb, U., Steinhauser, G., Walther, C., & Gupta, D. K. (2017). Mushrooms: From nutrition to mycoremediation. Environmental Science and Pollution Research International, 24(24), 19480–19493. https://doi.org/10.1007/s11356-017-9826-3
  • Chen, F., Zhang, W. Y., Hua, Z. Y., Zhu, Y. F., Jiang, F. F., Ma, J., & Gómez-Oliván, L. M. (2024). Unlocking the phytoremediation potential of organic acids: A study on alleviating lead toxicity in canola (Brassica napus L.). The Science of the Total Environment, 914, 169980. https://doi.org/10.1016/j.scitotenv.2024.169980
  • Chen, J., Liu, S. S., Wu, Q., Huang, W. J., Yang, F., Wang, Y. J., He, L. X., Ying, G. G., Chen, W. L., & Chen, C. E. (2023). Removal, fate, and bioavailability of fluoroquinolone antibiotics in a phytoremediation system with four wetland plants: Combing dynamic DGT and traditional methods. The Science of the Total Environment, 881, 163464. https://doi.org/10.1016/j.scitotenv.2023.163464
  • Chen, K., Hu, N., Chen, W., Chen, S., Zhang, H., & Ding, D. (2018). Effects of two plant growth promoting rhizobacteria on drought resistance and uranium bioaccumulation abilities by Macleaya cordata. Acta Scientiae Circumstantiae, 38(10), 4142–4149. https://doi.org/10.13671/j.hjkxxb.2018.0163
  • Chen, L., Liu, J. R., Zhang, W. X., Zhou, J. Q., Luo, D. Q., & Li, Z. M. (2021). Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. Journal of Hazardous Materials, 413, 125319. https://doi.org/10.1016/j.jhazmat.2021.125319
  • Chen, L., Long, C., Wang, D., & Yang, J. Y. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere, 242, 125112. https://doi.org/10.1016/j.chemosphere.2019.125112
  • Chen, L., Wang, D., Long, C., & Cui, Z. X. (2019). Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium-contaminated soil by Zebrina pendula Schnizl. Scientific Reports, 9(1), 19817. https://doi.org/10.1038/s41598-019-56262-9
  • Chen, L., Wang, J. Z., Beiyuan, J., Guo, X. T., Wu, H., & Fang, L. C. (2022). Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. The Science of the Total Environment, 816, 151556. https://doi.org/10.1016/j.scitotenv.2021.151556
  • Chen, L., Yang, J. Y., & Wang, D. (2020). Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. Journal of Cleaner Production, 263, 121491. https://doi.org/10.1016/j.jclepro.2020.121491
  • Chen, X., Dang, Y. X., Li, Q. L., Li, W., Xie, M. T., Wang, M. X., Tao, M. F., Zhao, S. S., Lai, J. L., & Wu, G. (2023). Uranium affects nitrogen metabolism and endoplasmic reticulum protein homeostasis in plants. Environmental and Experimental Botany, 213, 105444. https://doi.org/10.1016/j.envexpbot.2023.105444
  • Chen, X., Wu, G., Dang, Y. X., Li, Q. L., Xie, M. T., Li, W., Zhang, H., & Lai, J. L. (2023). Uranium triggers ferroptosis-like cell death in Vicia faba roots by increasing iron accumulation and inhibiting glutathione peroxidase activity. Environmental and Experimental Botany, 205, 105122. https://doi.org/10.1016/j.envexpbot.2022.105122
  • Chen, X., Wu, G., Ma, Q., Lai, J. L., Luo, X. G., & Ji, X. H. (2020). Cytotoxic and genotoxic evaluation and the toxicological mechanism of uranium in Vicia faba root. Environmental and Experimental Botany, 179, 104227. https://doi.org/10.1016/j.envexpbot.2020.104227
  • Chudasama, B., Porwal, A., González-Álvarez, I., Thakur, S., Wilde, A., & Kreuzer, O. P. (2018). Calcrete-hosted surficial uranium systems in Western Australia: Prospectivity modeling and quantitative estimates of resources. Ore Geology Reviews, 102, 906–936. https://doi.org/10.1016/j.oregeorev.2018.04.024
  • Cordeiro, C., Favas, P. J. C., Pratas, J., Sarkar, S. K., & Venkatachalam, P. (2016). Uranium accumulation in aquatic macrophytes in an uraniferous region: Relevance to natural attenuation. Chemosphere, 156, 76–87. https://doi.org/10.1016/j.chemosphere.2016.04.105
  • Corseuil, H. X., & Moreno, F. N. (2001). Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Research, 35(12), 3013–3017. https://doi.org/10.1016/S0043-1354(00)00588-1
  • Cui, Q. L., Zhang, Z. Q., Beiyuan, J. Z., Cui, Y. X., Chen, L., Chen, H. S., & Fang, L. C. (2023). A critical review of uranium in the soil-plant system: Distribution, bioavailability, toxicity, and bioremediation strategies. Critical Reviews in Environmental Science and Technology, 53(3), 340–365. https://doi.org/10.1080/10643389.2022.2054246
  • Deryabina, T. G., Kuchmel, S. V., Nagorskaya, L. L., Hinton, T. G., Beasley, J. C., Lerebours, A., & Smith, J. T. (2015). Long-term census data reveal abundant wildlife populations at Chernobyl. Current Biology: CB, 25(19), R824–826. https://doi.org/10.1016/j.cub.2015.08.017
  • Dewey, C., Sokaras, D., Kroll, T., Bargar, J. R., & Fendorf, S. (2020). Calcium-uranyl-carbonato species kinetically limit U(VI) reduction by Fe(II) and lead to U(V)-bearing ferrihydrite. Environmental Science & Technology, 54(10), 6021–6030. https://doi.org/10.1021/acs.est.9b05870
  • Ding, D., Tan, G., Zhang, Q., Tao, D., Zhang, H., Li, G., & Hu, N. (2022). Enhancement effects of weak electric field on uranium and manganese removal from leachate of uranium tailings impoundment by artificial wetland. Journal of Cleaner Production, 363, 132601. https://doi.org/10.1016/j.jclepro.2022.132601
  • do Nascimento, C. W. A., Hesterberg, D., & Tappero, R. (2020). Effects of exogenous citric acid on the concentration and spatial distribution of Ni, Zn, Co, Cr, Mn and Fe in leaves of Noccaea caerulescens grown on a serpentine soil. Journal of Hazardous Materials, 398, 122992. https://doi.org/10.1016/j.jhazmat.2020.122992
  • Dong, L. F., He, Z. F., Wu, J. Y., Zhang, K. Q., Zhang, D. Y., & Pan, X. L. (2023). Remediation of uranium-contaminated alkaline soil by rational application of phosphorus fertilizers: Effect and mechanism. Environmental Research, 220, 115172. https://doi.org/10.1016/j.envres.2022.115172
  • Duhan, S. S., Khyalia, P., Solanki, P., & Laura, J. S. (2023). Uranium sources, uptake, translocation in the soil-plant system and its toxicity in plants and humans: A critical review. Oriental Journal of Chemistry, 39(2), 303–319. https://doi.org/10.13005/ojc/390210
  • Edayilam, N., Ferguson, B., Montgomery, D., Al Mamun, A., Martinez, N., Powell, B. A., & Tharayil, N. (2020). Dissolution and vertical transport of uranium from stable mineral forms by plants as influenced by the co-occurrence of uranium with phosphorus. Environmental Science & Technology, 54(11), 6602–6609. https://doi.org/10.1021/acs.est.9b06559
  • Edayilam, N., Montgomery, D., Ferguson, B., Maroli, A. S., Martinez, N., Powell, B. A., & Tharayil, N. (2018). Phosphorus stress-induced changes in plant root exudation could potentially facilitate uranium mobilization from stable mineral forms. Environmental Science & Technology, 52(14), 7652–7662. https://doi.org/10.1021/acs.est.7b05836
  • El Hayek, E., Torres, C., Rodriguez-Freire, L., Blake, J. M., De Vore, C. L., Brearley, A. J., Spilde, M. N., Cabaniss, S., Ali, A. M. S., & Cerrato, J. M. (2018). Effect of calcium on the bioavailability of dissolved uranium (VI) in plant roots under circumneutral pH. Environmental Science & Technology, 52(22), 13089–13098. https://doi.org/10.1021/acs.est.8b02724
  • Favas, P. J. C., Pratas, J., Mitra, S., Sarkar, S. K., & Venkatachalam, P. (2016). Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. The Science of the Total Environment, 568, 350–368. https://doi.org/10.1016/j.scitotenv.2016.06.024
  • Favas, P. J. C., Pratas, J., Paul, M. S., & Prasad, M. N. V. (2019). Remediation of uranium-contaminated sites by phytoremediation and natural attenuation. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites: Market opportunities in sustainable phytoremediation (pp. 277–300). Elsevier. https://doi.org/10.1016/B978-0-12-813912-7.00010-7
  • Feng, A. H., Wang, W. M., Li, G. J., Guo, L. B., Zhang, X. Z., & Cui, Y. T. (2017). Research progress of muts-protein family in plant DNA mismatch repair system. China Rice, 23, 5–11.
  • Frimmel, H. E. (2005). The world’s largest gold province: Implications on Archaean atmospheric evolution. In J. Mao & F. P. Bierlein (Eds.), Mineral deposit research: Meeting the global challenge, Vols 1 and 2 (pp. 949–952). Springer-Verlag.
  • Gao, N., Huang, Z. H., Liu, H. Q., Hou, J., & Liu, X. H. (2019). Advances on the toxicity of uranium to different organisms. Chemosphere, 237, 124548. https://doi.org/10.1016/j.chemosphere.2019.124548
  • Gil-Pacheco, E., Suárez-Navarro, J. A., Fernández-Salegui, A. B., Sánchez-González, S. M., Suarez-Navarro, M. J., & García-Sánchez, A. (2021). Factors that influence the absorption of uranium by indigenous plants on the spoil tip of an abandoned mine in western Spain. The Science of the Total Environment, 759, 143571. https://doi.org/10.1016/j.scitotenv.2020.143571
  • Goodson, J. M., Hardt, M., Hartman, M. L., Alqaderi, H., Green, D., Tavares, M., Mutawa, A. S., Ariga, J., Soparkar, P., Behbehani, J., & Behbehani, K. (2019). Salivary N1-methyl-2-pyridone-5-carboxamide, a biomarker for uranium uptake, in Kuwaiti children exhibiting exceptional weight gain. Frontiers in Endocrinology, 10, 382. https://doi.org/10.3389/fendo.2019.00382
  • Götz, C., Geipel, G., & Bernhard, G. (2010). The influence of the temperature on the carbonate complexation of uranium (VI): A spectroscopic study. Journal of Radioanalytical and Nuclear Chemistry, 287(3), 961–969. https://doi.org/10.1007/s10967-010-0854-4
  • Guo, D., Ren, C., Ali, A., Zhang, Y., Du, J., Wang, P., Li, R., & Zhang, Z. (2020). A phytoextraction trial strengthened by Streptomyces pactum and plant nutrients: In view of plant bioindicators and phytoextraction indices. Environmental Pollution, 265(Pt B), 114867. https://doi.org/10.1016/j.envpol.2020.114867
  • Gupta, D. K., & Walther, C. (2020). Uranium in plants and the environment. Springer Nature Switzerland AG.
  • Gupta, D. K., Vuković, A., Semenishchev, V. S., Inouhe, M., & Walther, C. (2020). Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. Environmental Science and Pollution Research International, 27(3), 3513–3522. https://doi.org/10.1007/s11356-019-07068-9
  • Guzmán, L., Durán-Lara, E. F., Donoso, W., Nachtigall, F. M., & Santos, L. S. (2015). In vivo nanodetoxication for acute uranium exposure. Molecules, 20(6), 11017–11033. https://doi.org/10.3390/molecules200611017
  • Holland, H. D., & Turekian, K. K. (2014). Treatise on geochemistry. Elsevier.
  • Hou, J., Liu, H. Q., Zhang, S. Y., Liu, X. H., Hayat, T., Alsaedi, A., & Wang, X. K. (2019). Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere, 229, 206–213. https://doi.org/10.1016/j.chemosphere.2019.04.217
  • Hou, J., Wang, C. J., Zhou, Y., Li, S. G., Hayat, T., Alsaedi, A., & Wang, X. K. (2018). Effects of uranium stress on physiological and biochemical characteristics in seedlings of six common edible vegetables. Journal of Radioanalytical and Nuclear Chemistry, 316(3), 1001–1010. https://doi.org/10.1007/s10967-018-5792-6
  • Huang, F. Y., Dong, F. Q., Chen, L., Zeng, Y., Zhou, L., Sun, S. Y., Wang, Z., Lai, J. L., & Fang, L. C. (2024). Biochar-mediated remediation of uranium-contaminated soils: Evidence, mechanisms, and perspectives. Biochar, 6(1), 16. https://doi.org/10.1007/s42773-024-00308-3
  • Huang, H., Tian, Z. Q., Guo, D., Tang, Z. X., Li, R. H., Ali, A., Cao, Z. X., Lu, H. Y., Shen, Y., Zhu, Y. L., & Han, J. N. (2024). Rice straw returning enhances cadmium activation by accelerating iron cycling thus hydroxyl radical production in paddy soils during drainage. The Science of the Total Environment, 923, 171543. https://doi.org/10.1016/j.scitotenv.2024.171543
  • IAEA. (2014). Uranium resources, production, and demand, 2013 Red Book. OECD.
  • IAEA. (2016). World distribution of uranium deposits (UDEPO). IAEA.
  • Ibanez, C., Suhard, D., Elie, C., Ebrahimian, T., Lestaevel, P., Roynette, A., Dhieux-Lestaevel, B., Gensdarmes, F., Tack, K., & Tessier, C. (2019). Evaluation of the nose-to-brain transport of different physicochemical forms of uranium after exposure via inhalation of a UO4 aerosol in the rat. Environmental Health Perspectives, 127(9), 97010. https://doi.org/10.1289/EHP4927
  • Iqbal, M. (2016). Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere, 144, 785–802. https://doi.org/10.1016/j.chemosphere.2015.09.048
  • Jing, L. H., Zhang, X. H., Ali, I., Chen, X. M., Wang, L., Chen, H., Han, M. W., Shang, R., & Wu, Y. W. (2020). Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass. Environment International, 144, 106051. https://doi.org/10.1016/j.envint.2020.106051
  • John, W. A., Lückel, B., Matschiavelli, N., Hübner, R., Matschi, S., Hoehenwarter, W., & Sachs, S. (2022). Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. The Science of the Total Environment, 823, 153700. https://doi.org/10.1016/j.scitotenv.2022.153700
  • Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S. X., Dieckmann, U., & Prentice, I. C. (2022). Towards a unified theory of plant photosynthesis and hydraulics. Nature Plants, 8(11), 1304–1316. https://doi.org/10.1038/s41477-022-01244-5
  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175. https://doi.org/10.3390/ijms13033145
  • Kolhe, N., Zinjarde, S., & Acharya, C. (2020). Impact of uranium exposure on marine yeast, Yarrowia lipolytica: Insights into the yeast strategies to withstand uranium stress. Journal of Hazardous Materials, 381, 121226. https://doi.org/10.1016/j.jhazmat.2019.121226
  • Lai, J. L., Liu, Z. W., & Luo, X. G. (2020). A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium. Journal of Hazardous Materials, 386, 121437. https://doi.org/10.1016/j.jhazmat.2019.121437
  • Lai, J. L., Liu, Z. W., Li, C., & Luo, X. G. (2021). Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. Journal of Hazardous Materials, 409, 124997. https://doi.org/10.1016/j.jhazmat.2020.124997
  • Laurette, J., Larue, C., Llorens, I., Jaillard, D., Jouneau, P. H., Bourguignon, J., & Carrière, M. (2012). Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: A XAS and TEM study. Environmental and Experimental Botany, 77, 87–95. https://doi.org/10.1016/j.envexpbot.2011.11.005
  • Lee, M., & Yang, M. (2010). Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials, 173(1-3), 589–596. https://doi.org/10.1016/j.jhazmat.2009.08.127
  • Leggett, R. W., & Harrison, J. D. (1995). Fractional absorption of ingested U in humans. Health Physics, 68(4), 484–498. https://doi.org/10.1097/00004032-199504000-00005
  • Leggett, R. W., & Meck, R. A. (2018). Action levels for airborne uranium in the workplace: Chemical and radiological assessments. Journal of Radiological Protection, 38(2), 632–649. https://doi.org/10.1088/1361-6498/aaae1f
  • Lettens, S., Vandecasteele, B., De Vos, B., Vansteenkiste, D., & Verschelde, P. (2011). Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. The Science of the Total Environment, 409(11), 2306–2316. https://doi.org/10.1016/j.scitotenv.2011.02.029
  • Li, L. Z., Luo, Y. M., Li, R. J., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. C. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929–937. https://doi.org/10.1038/s41893-020-0567-9
  • Li, N., Wang, Y. L., Zhou, L., Fu, D. J., Chen, T., Chen, X. M., Wang, Q., & Zhu, W. K. (2024). The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics. Journal of Hazardous Materials, 461, 132635. https://doi.org/10.1016/j.jhazmat.2023.132635
  • Li, Z. L., He, Y. F., Sonne, C., Lam, S. S., Kirkham, M. B., Bolan, N., Rinklebe, J., Chen, X. M., & Peng, W. X. (2023). A strategy for bioremediation of nuclear contaminants in the environment. Environmental Pollution, 319, 120964. https://doi.org/10.1016/j.envpol.2022.120964
  • Lin, Y. W. (2020). Uranyl binding to proteins and structural-functional impacts. Biomolecules, 10(3), 457. https://doi.org/10.3390/biom10030457
  • Liu, H. Q., Wang, X. X., Wu, Y. Z., Hou, J., Zhang, S. Y., Zhou, N., & Wang, X. K. (2019). Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environmental Pollution, 246, 414–422. https://doi.org/10.1016/j.envpol.2018.12.034
  • Luo, J. C., Hu, R. Z., Fayek, M., Bi, X. W., Shi, S. H., & Chen, Y. W. (2017). Newly discovered uranium mineralization at ∼2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China. Journal of Asian Earth Sciences, 137, 241–249. https://doi.org/10.1016/j.jseaes.2017.01.021
  • Luo, J. C., Hu, R. Z., Fayek, M., Li, C. S., Bi, X. W., Abdu, Y., & Chen, Y. W. (2014). In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geology Reviews, 65(4), 968–978. https://doi.org/10.1016/j.oregeorev.2014.06.016
  • Ma, M. H., Wang, R. X., Xu, L. N., Xu, M., & Liu, S. J. (2020). Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environment International, 145, 106107. https://doi.org/10.1016/j.envint.2020.106107
  • Martin, A., Hassan-Loni, Y., Fichtner, A., Péron, O., David, K., Chardon, P., Larrue, S., Gourgiotis, A., Sachs, S., Arnold, T., Grambow, B., Stumpf, T., & Montavon, G. (2020). An integrated approach combining soil profile, records and tree ring analysis to identify the origin of environmental contamination in a former uranium mine (Rophin, France). The Science of the Total Environment, 747, 141295. https://doi.org/10.1016/j.scitotenv.2020.141295
  • Masle, J., Gilmore, S. R., & Farquhar, G. D. (2005). The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 436(7052), 866–870. https://doi.org/10.1038/nature03835
  • Monreal, M. J., & Diaconescu, P. L. (2010). The riches of uranium. Nature Chemistry, 2(5), 424–424. https://doi.org/10.1038/nchem.642
  • Montgomery, D. A., Edayilam, N., Page, H., Sheriff, S. A., Tharayil, N., Powell, B. A., & Martinez, N. E. (2023). Comparative uptake, translocation, and plant mediated transport of Tc-99, Cs-133, Np-237, and U-238 in Savannah River Site soil columns for the grass species Andropogon virginicus. The Science of the Total Environment, 857(Pt 1), 159400. https://doi.org/10.1016/j.scitotenv.2022.159400
  • Muhammad, I., Hu, S. L., Luo, X. G., Ying, C., & Naseem, S. (2024). Screening and signifying the uranium remediation level of Alternanthera philoxeroides and Eichhornia crassipes from aquatic medium. Environmental Pollution, 342, 123063. https://doi.org/10.1016/j.envpol.2023.123063
  • Nalivaiko, K. A., Skripchenko, S. Y., Titova, S. M., & Semenishchev, V. S. (2023). Radioactive wastes from near-surface storage facility of uranium conversion production. Journal of Radioanalytical and Nuclear Chemistry, 332(7), 2499–2512. https://doi.org/10.1007/s10967-023-08912-6
  • Nie, X. Q., Dong, F. Q., Liu, N., Liu, M. X., Zhang, D., Kang, W., Sun, S. Y., Zhang, W., & Yang, J. (2015). Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions. Applied Surface Science, 347, 122–130. https://doi.org/10.1016/j.apsusc.2015.03.026
  • Pecina, V., Juřička, D., Kynický, J., Baltazár, T., Komendová, R., & Brtnický, M. (2020). The Need to improve riparian forests management in uranium mining areas based on assessment of heavy metal and uranium contamination. Forests, 11(9), 952. https://doi.org/10.3390/f11090952
  • Pérez, D. J., Lombardero, L. R., & Doucette, W. J. (2023). Influence of exposure time, physicochemical properties, and plant transpiration on the uptake dynamics and translocation of pharmaceutical and personal care products in the aquatic macrophyte Typha latifolia. The Science of the Total Environment, 896, 165107. https://doi.org/10.1016/j.scitotenv.2023.165107
  • Peters, A., Nawrot, T. S., & Baccarelli, A. A. (2021). Hallmarks of environmental insults. Cell, 184(6), 1455–1468. https://doi.org/10.1016/j.cell.2021.01.043
  • Pownceby, M. I., & Johnson, C. (2014). Geometallurgy of Australian uranium deposits. Ore Geology Reviews, 56, 25–44. https://doi.org/10.1016/j.oregeorev.2013.07.001
  • Prakash, D., Gabani, P., Chandel, A. K., Ronen, Z., & Singh, O. V. (2013). Bioremediation: A genuine technology to remediate radionuclides from the environment. Microbial Biotechnology, 6(4), 349–360. https://doi.org/10.1111/1751-7915.12059
  • Ren, C. G., Kong, C. C., Wang, S. X., & Xie, Z. H. (2019). Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 217, 773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085
  • Rosas-Moreno, J., Pittman, J. K., & Robinson, C. H. (2021). Specific arbuscular mycorrhizal fungal–plant interactions determine radionuclide and metal transfer into Plantago lanceolata. Plants, People, Planet, 3(5), 667–678. https://doi.org/10.1002/ppp3.10185
  • Rosas-Moreno, J., Walker, C., Duffy, K., Krüger, C., Krüger, M., Robinson, C. H., & Pittman, J. K. (2023). Isolation and identification of arbuscular mycorrhizal fungi from an abandoned uranium mine and their role in soil-to-plant transfer of radionuclides and metals. The Science of the Total Environment, 876, 162781. https://doi.org/10.1016/j.scitotenv.2023.162781
  • Rubin, E., & Ramaswami, A. (2001). The potential for phytoremediation of MTBE. Water Research, 35(5), 1348–1353. https://doi.org/10.1016/S0043-1354(00)00555-8
  • Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2015). Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. Journal of Environmental Radioactivity, 150, 36–43. https://doi.org/10.1016/j.jenvrad.2015.07.021
  • Sarthou, M. C. M., Devime, F., Baggio, C., Figuet, S., Alban, C., Bourguignon, J., & Ravanel, S. (2022). Calcium-permeable cation channels are involved in uranium uptake in Arabidopsis thaliana. Journal of Hazardous Materials, 424(Pt B), 127436. https://doi.org/10.1016/j.jhazmat.2021.127436
  • Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 23(1), 25–41. https://doi.org/10.1016/j.tplants.2017.09.003
  • Schlichting, P. E., Love, C. N., Webster, S. C., & Beasley, J. C. (2019). Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs, 18, e00107. https://doi.org/10.1016/j.fooweb.2018.e00107
  • Schnug, E., & Lottermoser, B. G. (2013). Fertilizer-derived uranium and its threat to human health. Environmental Science & Technology, 47(6), 2433–2434. https://doi.org/10.1021/es4002357
  • Selvakumar, R., Ramadoss, G., Menon, M. P., Rajendran, K., Thavamani, P., Naidu, R., & Megharaj, M. (2018). Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of Environmental Radioactivity, 192, 592–603. https://doi.org/10.1016/j.jenvrad.2018.02.018
  • Serre, N. B. C., Alban, C., Bourguignon, J., & Ravanel, S. (2019). Uncovering the physiological and cellular effects of uranium on the root system of Arabidopsis thaliana. Environmental and Experimental Botany, 157, 121–130. https://doi.org/10.1016/j.envexpbot.2018.10.004
  • Shu, X. Y., Li, Y. P., Huang, W. X., Chen, S. Z., Xu, C., Zhang, S., Li, B. S., Wang, X. Q., Qing, Q., & Lu, X. R. (2020). Rapid vitrification of uranium-contaminated soil: Effect and mechanism. Environmental Pollution, 263, 114539. https://doi.org/10.1016/j.envpol.2020.114539
  • Simon, O., Gagnaire, B., Camilleri, V., Cavalié, I., Floriani, M., & Adam-Guillermin, C. (2017). Toxicokinetic and toxicodynamic of depleted uranium in the zebrafish, Danio rerio. Aquatic Toxicology, 197, 9–18. https://doi.org/10.1016/j.aquatox.2017.12.013
  • Skomurski, F. N., Ilton, E. S., Engelhard, M. H., Arey, B. W., & Rosso, K. M. (2011). Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochimica et Cosmochimica Acta, 75(22), 7277–7290. https://doi.org/10.1016/j.gca.2011.08.006
  • Song, H., Zhang, C. J., Ni, S. J., Xu, Z. Q., & Huang, C. H. (2014). New evidence for genesis of the zoige carbonate-siliceous-pelitic rock type uranium deposit in Southern Qinling: Discovery and significance of the 64 Ma intrusions. Acta Geologica Sinica - English Edition, 88(6), 1757–1769. https://doi.org/10.1111/1755-6724.12342
  • Stevens, W., Bruenger, F. W., Atherton, D. R., Smith, J. M., & Taylor, G. N. (1980). The distribution and retention of hexavalent U-233 in the beagle. Radiation Research, 83(1), 109–126. https://doi.org/10.2307/3575263
  • Sullivan, M. F., Ruemmler, P. S., Ryan, J. L., & Buschbom, R. L. (1986). Influence of oxidizing or reducing agents on gastrointestinal absorption of U, Pu, Am, Cm and Pm by rats. Health Physics, 50(2), 223–232. https://doi.org/10.1097/00004032-198602000-00006
  • Sun, M. H., Liu, S. Q., Du, K. J., Nie, C. M., & Lin, Y. W. (2014). A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 118, 130–137. https://doi.org/10.1016/j.saa.2013.08.112
  • Sun, X. D., Yuan, X. Z., Jia, Y. B., Feng, L. J., Zhu, F. P., Dong, S. S., Liu, J. J., Kong, X. P., Tian, H. Y., Duan, J. L., Ding, Z. J., Wang, S. G., & Xing, B. S. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9), 755–760. https://doi.org/10.1038/s41565-020-0707-4
  • Tao, Q., Hou, D. D., Yang, X. E., & Li, T. Q. (2016). Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant and Soil, 398(1-2), 139–152. https://doi.org/10.1007/s11104-015-2651-x
  • Tewari, R., Horemans, N., Nauts, R., Wannijn, J., Van Hees, M., & Vandenhove, H. (2015). Uranium exposure induces nitric oxide and hydrogen peroxide generation in Arabidopsis thaliana. Environmental and Experimental Botany, 120, 55–64. https://doi.org/10.1016/j.envexpbot.2015.08.004
  • Timofeev, A., Migdisov, A. A., Williams-Jones, A. E., Roback, R., Nelson, A. T., & Xu, H. W. (2018). Uranium transport in acidic brines under reducing conditions. Nature Communications, 9(1), 1469. https://doi.org/10.1038/s41467-018-03564-7
  • Tsarev, S., Collins, R. N., Ilton, E. S., Fahy, A., & Waite, T. D. (2017). The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): Role of oxide shell, reduction mechanism and the formation of U(V)-carbonate phases. Environmental Science: Nano, 4(6), 1304–1313. https://doi.org/10.1039/C7EN00024C
  • UNSCEAR. (2017). UNSCEAR 2016 report: Sources, effects and risks of ionizing radiation. (Report No. A/71/46 and Corr.1). United Nations Publication.
  • UNSCEAR. (2018). Sources and effects of ionizing radiation. United Nations Publication.
  • Uvarova, Y. A., Kyser, T. K., Geagea, M. L., & Chipley, D. (2014). Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. Geochimica et Cosmochimica Acta, 146(1), 1–17. https://doi.org/10.1016/j.gca.2014.09.034
  • Vallet, A., Martin-Laffon, J., Favier, A., Revel, B., Bonnot, T., Vidaud, C., Armengaud, J., Gaillard, J. C., Delangle, P., Devime, F., Figuet, S., Serre, N. B. C., Erba, E. B., Brutscher, B., Ravanel, S., Bourguignon, J., & Alban, C. (2023). The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. Journal of Hazardous Materials, 446, 130668. https://doi.org/10.1016/j.jhazmat.2022.130668
  • Vanhoudt, N., Cuypers, A., Horemans, N., Remans, T., Opdenakker, K., Smeets, K., Bello, D. M., Havaux, M., Wannijn, J., Van Hees, M., Vangronsveld, J., & Vandenhove, H. (2011). Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Journal of Environmental Radioactivity, 102(6), 638–645. https://doi.org/10.1016/j.jenvrad.2011.03.015
  • Vanhoudt, N., Vandenhove, H., Horemans, N., Bello, D. M., Van Hees, M., Wannijn, J., Carleer, R., Vangronsveld, J., & Cuypers, A. (2011). Uranium induced effects on development and mineral nutrition of Arabidopsis thaliana. Journal of Plant Nutrition, 34(13), 1940–1956. https://doi.org/10.1080/01904167.2011.610482
  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372. https://doi.org/10.1016/j.pbi.2009.05.001
  • Videvall, E., Burraco, P., & Orizaola, G. (2023). Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands. Environmental Pollution, 330, 121774. https://doi.org/10.1016/j.envpol.2023.121774
  • Vuković, A., Schulz, W., Čamagajevac, I. Š., Gaur, A., Walther, C., & Gupta, D. K. (2020). Mycoremediation affects antioxidative status in winter rye plants grown at Chernobyl exclusion zone site in Ukraine. Environmental Science and Pollution Research International, 27(20), 25818–25827. https://doi.org/10.1007/s11356-020-09137-w
  • Wan, Y. B., Xu, W. Q., Liu, J., Gomez, M. A., Sun, M. Q., Wang, J. L., Wang, J., Zhou, L., Dai, Q. W., Gong, J., & Chen, D. Y. (2024). Distribution and migration of uranium, chromium, and accompanying metal(loid)s in soil-plants system around a uranium hydrometallurgical area. Environmental Pollution, 344, 123235. https://doi.org/10.1016/j.envpol.2023.123235
  • Wang, S., Ran, Y. H., Lu, B. H., Li, J., Kuang, H. R., Gong, L., & Hao, Y. H. (2020). A review of uranium-induced reproductive toxicity. Biological Trace Element Research, 196(1), 204–213. https://doi.org/10.1007/s12011-019-01920-2
  • Wang, X., Dai, X., Shi, C., Wan, J., Silver, M. A., Zhang, L., Chen, L., Yi, X., Chen, B., Zhang, D., Yang, K., Diwu, J., Wang, J., Xu, Y., Zhou, R., Chai, Z., & Wang, S. (2019). A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nature Communications, 10(1), 2570. https://doi.org/10.1038/s41467-019-10276-z
  • Wang, Z. M., Lee, S. W., Kapoor, P., Tebo, B. M., & Giammar, D. E. (2013). Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochimica et Cosmochimica Acta, 100, 24–40. https://doi.org/10.1016/j.gca.2012.09.053
  • Webber, Z. R., Webber, K. G. I., Rock, T., St Clair, I., Thompson, C., Groenwald, S., Aanderud, Z., Carling, G. T., Frei, R. J., & Abbott, B. W. (2021). Diné citizen science: Phytoremediation of uranium and arsenic in the Navajo Nation. The Science of the Total Environment, 794, 148665. https://doi.org/10.1016/j.scitotenv.2021.148665
  • Xia, H., Cheng, X., Zheng, L., Ren, H., Li, W., Lei, Y., Plenković-Moraj, A., & Chen, K. (2022). Sex-specific physiological responses of Populus cathayana to uranium stress. Forests, 13(7), 1123. https://doi.org/10.3390/f13071123
  • Xia, Q. Y., Zhang, L. M., Dong, H. L., Li, Z. Y., Zhang, Y. Y., Hu, J. L., Chen, H. Y., & Chen, Y. (2020). Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China. Geochimica et Cosmochimica Acta, 279, 88–106. https://doi.org/10.1016/j.gca.2020.03.044
  • Xiao, J. F., Fisher, J. B., Hashimoto, H., Ichii, K., & Parazoo, N. C. (2021). Emerging satellite observations for diurnal cycling of ecosystem processes. Nature Plants, 7(7), 877–887. https://doi.org/10.1038/s41477-021-00952-8
  • Yamaji, N., & Ma, J. F. (2014). The node, a hub for mineral nutrient distribution in graminaceous plants. Trends in Plant Science, 19(9), 556–563. https://doi.org/10.1016/j.tplants.2014.05.007
  • Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K., & Ma, J. F. (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 162(2), 927–939. https://doi.org/10.1104/pp.113.216564
  • Yan, L. J., Le, Q. V., Sonne, C., Yang, Y. F., Yang, H., Gu, H. P., Ma, N. L., Lam, S. S., & Peng, W. X. (2021). Phytoremediation of radionuclides in soil, sediments and water. Journal of Hazardous Materials, 407, 124771. https://doi.org/10.1016/j.jhazmat.2020.124771
  • Yeats, T. H., & Rose, J. K. C. (2013). The formation and function of plant cuticles. Plant Physiology, 163(1), 5–20. https://doi.org/10.1104/pp.113.222737
  • Yu, L. B., Li, W. J., Chu, J., Chen, C., Li, X. J., Tang, W., Xia, B. Y., & Xiong, Z. H. (2021). Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase. Environmental Pollution, 271, 116377. https://doi.org/10.1016/j.envpol.2020.116377
  • Yuan, W. H., She, J. Y., Liu, J., Zhang, Q., Wei, X. D., Huang, L. T., Zeng, X., & Wang, J. (2024). Insight into microbial functional genes’ role in geochemical distribution and cycling of uranium: The evidence from covering soils of uranium tailings dam. Journal of Hazardous Materials, 461, 132630. https://doi.org/10.1016/j.jhazmat.2023.132630
  • Yuan, Y., Zheng, J. F., Zhao, T. T., Tang, X. Q., & Hu, N. (2017). Hydrogen sulfide alleviates uranium-induced acute hepatotoxicity in rats: Role of antioxidant and antiapoptotic signaling. Environmental Toxicology, 32(2), 581–593. https://doi.org/10.1002/tox.22261
  • Zhang, Y., Ding, D. X., Li, G. Y., Yi, H. T., Zhai, K. G., Hu, N., Zhang, H., Dai, Z. R., Ma, J. H., Li, F., Sun, J., & Wang, Y. D. (2021). Enhanced effects and mechanisms of Syngonium podophyllum-Peperomia tetraphylla co-planting on phytoremediation of low concentration uranium-bearing wastewater. Chemosphere, 279, 130810. https://doi.org/10.1016/j.chemosphere.2021.130810
  • Zhang, Y., Lai, J. L., Ji, X. H., & Luo, X. G. (2020). Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uranium-exposure in Vicia faba. Journal of Hazardous Materials, 398, 122997. https://doi.org/10.1016/j.jhazmat.2020.122997
  • Zheng, G. L., Pemberton, R., & Li, P. (2017). Assessment of Cs and Sr accumulation in two epiphytic species of Tillandsia (Bromeliaceae) in vitro. Chemistry and Ecology, 33(1), 51–60. https://doi.org/10.1080/02757540.2016.1265515
  • Zou, C., Sha, Y. H., Ding, D. X., Li, G. Y., Cui, Y. T., Hu, N., Zhang, H., Dai, Z. R., Li, F., Sun, J., & Wang, Y. D. (2019). Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum. Chemosphere, 224, 316–323. https://doi.org/10.1016/j.chemosphere.2019.01.098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.