369
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Carbon Accounting for Compost Use in Urban Areas

&
Pages 227-239 | Received 10 Dec 2018, Accepted 26 Sep 2019, Published online: 28 Jan 2020

References

  • Bae, J., and Y. Ryu. 2015. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning 136:57–67. doi: 10.1016/j.landurbplan.2014.11.015.
  • Batjiaka, R. 2016. Compost use by state DOTs. Biocycle 57 (9):18.
  • Brown, S. 2016. Greenhouse gas accounting for landfill diversion of food scraps and yard waste. Compost Science & Utilization 24:11–19. https://doi.org/10.1080/1065657X.2015.1026005
  • Brown, S., A. Carpenter, and N. Beecher. 2010. Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environmental Science & Technology 44 (24):9509–15. doi: 10.1021/es101210k.
  • Brown, S., and M. Cotton. 2011. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Science & Utilization 19:88–97.
  • Brown, S., and N. Goldstein. 2016. The role of organic residuals in urban agriculture. In Sowing Seeds in the City: Ecological and Municipal Considerations, ed. S. L. Brown, K. McIvor, and E. Snyder, 93–106. Dordrecht, Heidelberg, New York and London: Springer Publishers.
  • Brown, S., K. Kurtz, A. Bary, and C. Cogger. 2011. Quantifying benefits associated with land application of organic residuals in Washington State. Environmental Science & Technology 45 (17):7451–8. doi: 10.1021/es2010418.
  • Brown, S. L., R. L. Chaney, and G. M. Hettiarachchi. 2016. Lead in urban soils: A real or perceived concern for urban agriculture? Journal of Environment Quality 45 (1):26–36. doi: 10.2134/jeq2015.07.0376.
  • City of Tacoma. Accessed October 13, 2019. https://www.cityoftacoma.org/cms/one.aspx?objectId=16884.
  • Clinton, N., M. Stuhlmacher, A. Miles, N. U. Aragon, M. Wagner, M. Georgescu, C. Herwig, and P. Gong. 2018. A global geospatial ecosystem services estimate of urban agriculture. Earths Future 6 (1):40–60. doi: 10.1002/2017EF000536.
  • Cogger, C. G. 2005. Potential compost benefits for restoration of soils disturbed by urban development. Compost Science & Utilization 13 (4):243–51. doi: 10.1080/1065657X.2005.10702248.
  • Cogger, C. G., A. I. Bary, A. C. Kennedy, and A. M. Fortuna. 2013. Long-term crop and soil response to biosolids applications in dryland wheat. Journal of Environment Quality 42 (6):1872–80. doi: 10.2134/jeq2013.05.0109.
  • Cogger, C. G., A. I. Bary, E. A. Myhre, and A. M. Fortuna. 2013. Biosolids applications to tall fescue have long-term influence on soil nitrogen, carbon and phosphorus. Journal of Environment Quality 42 (2):516–22. doi: 10.2134/jeq2012.0269.
  • Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber, and R. K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26:152–8. doi: 10.1016/j.gloenvcha.2014.04.002.
  • DC Water. Accessed October 13, 2019. http://bloomsoil.com/
  • Faucette, L. B., L. M. Risse, M. A. Nearing, J. W. Gaskin, and L. T. West. 2004. Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil and Water Conservation 59 (4):154–60.
  • Glanville, T. D., R. A. Persyn, T. L. Richard, J. M. Laflen, and P. M. Dixon. 2004. Environmental effects of applying composted organics to new highway embankments: Part 2. Water quality. Transactions of the ASAE 47 (2):471–81.
  • Golubiewski, N. E. 2006. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecological Application 16 (2):555–71. doi: 10.1890/1051-0761(2006)016.[0555:UIGCPE]2.0.CO;2]
  • Groffman, P. M., R. V. Pouyat, M. L. Cadenasso, W. C. Zipperer, K. Szlavecz, I. D. Yesilonis, L. E. Band, and G. S. Brush. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236 (2–3):177–92. doi: 10.1016/j.foreco.2006.09.002.
  • Groffman, P. M., C. O. Williams, R. V. Pouyat, L. E. Band, and I. D. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environment Quality 38 (5):1848–60. doi: 10.2134/jeq2008.0521.
  • Ippolito, J. A., K. A. Barbarick, M. W. Paschke, and R. B. Brobst. 2010. Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation. Journal of Environmental Management 91 (5):1123–30. doi: 10.1016/j.jenvman.2010.01.004.
  • Khaleel, R., K. R. Reddy, and M. R. Overcash. 1981. Changes in soil physical properties due to organic waste applications: A review. Journal of Environment Quality 10 (2):133–41. doi: 10.2134/jeq1981.00472425001000020002x.
  • King County. Accessed October 13, 2019. https://www.kingcounty.gov/services/environment/wastewater/resource-recovery/loop-biosolids/carbon.aspx.
  • King County. Accessed October 13, 2019. https://www.kingcounty.gov/depts/permitting-environmental-review/about/YearlyStats.aspx.
  • Linde, D. T., and L. D. Hepner. 2005. Turfgrass seed and sod establishment on soil amended with biosolids compost. HortTechnology 15 (3):577–83. doi: 10.21273/HORTTECH.15.3.0577.
  • Livesley, S. J., E. G. McPherson, and C. Calfapietra. 2016. The urban forest and ecosystem services: Impact on urban water, heat, and pollution cycles at the tree, street and city scale. Journal of Environment Quality 45 (1):119–24. doi: 10.2134/jeq2015.11.0567.
  • Livesley, S. J., A. Ossola, C. G. Threlfall, A. K. Hahs, and N. S. G. Williams. 2016. Soil carbon and carbon/nitrogen ratio change under tree canopy, tall grass, and turf grass areas of urban green space. Journal of Environment Quality 45 (1):215–23. doi: 10.2134/jeq2015.03.0121.
  • Loschinkohl, C., and M. J. Boehm. 2001. Composted biosolids incorporation improves turfgrass establishment on disturbed urban soil and reduces leaf rust severity. HortScience 36 (4):790–4. doi: 10.21273/HORTSCI.36.4.790.
  • Martinez, N. G., N. D. Bettez, and P. M. Groffman. 2014. Sources of variation in home lawn soil nitrogen dynamics. Journal of Environment Quality 43 (6):2146–51. doi: 10.2134/jeq2014.03.0103.
  • McIvor, K., and S. Brown. 2016. A case study: Integrating urban agriculture into the municipal infrastructure in Tacoma, WA. In Sowing seeds in the city: Ecological and municipal considerations, ed. S. L. Brown, K. McIvor, and E. Snyder, 385–400, Dordrecht, Heidelberg, New York and London: Springer Publishers.
  • McIvor, K., C. Cogger, and S. Brown. 2012. Effects of biosolids based soil products on soil physical and chemical properties in urban gardens. Compost Science & Utilization 20 (4):199–206. doi: 10.1080/1065657X.2012.10737049.
  • Metropolitan Water Reclamation District Chicago. Accessed October 13, 2019. https://mwrd.org/biosolids.
  • Milesi, C., S. W. Running, C. D. Elvidge, J. B. Dietz, B. T. Tuttle, and R. R. Nemani. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management 36 (3):426–38. doi: 10.1007/s00267-004-0316-2.
  • Oldfield, E. E., A. J. Felson, N. Auyeung, T. W. Crowther, N. F. Sonti, Y. Harada, D. S. Maynard, N. W. Sokol, M. S. Ashton, R. J. Warren II, et al. 2015. Growing the urban forest: Tree performance in response to biotic and abiotic land management. Restoration Ecology 23 (5):707–18. doi: 10.1111/rec.12230.
  • Oldfield, E. E., A. J. Felson, S. A. Wood, R. A. Hallett, M. S. Strickland, and M. A. Bradford. 2014. Positive effects of afforestation efforts on the health of urban soils. Forest Ecology and Management 313:266–73. doi: 10.1016/j.foreco.2013.11.027.
  • Persyn, R. A., T. D. Glanville, T. L. Richard, J. M. Laflen, and P. M. Dixon. 2004. Environmental effects of applying composted organics to new highway embankments: Part 1. Interrill runoff and erosion. Transactions of the ASAE 47 (2):463–9.
  • Pouyat, R. V., K. Szlavecz, I. D. Yesilonis, P. M. Groffman, and K. Schwarz. 2010. Chemical, physical and biological characteristics of urban soils. In Agronomy Monograph 55 Urban Ecosystem Ecology, ed. J. Aitkenhead-Peterson and A. Volder, 119–52. Madison, WI: American Society of Agronomy, Crop Science Society of America and Soil Science Society of America.
  • Pouyat, R. V., I. D. Yesilonis, and D. J. Nowak. 2006. Carbon storage by urban soils in the United States. Journal of Environment Quality 35 (4):1566–75. doi: 10.2134/jeq2005.0215.
  • Powlson, D. S., A. Bhogal, B. J. Chambers, K. Coleman, A. J. Macdonald, and K.W.T. Goulding, A. P. Whitmore. 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agriculture, Ecosystems & Environment 146:23–33. doi: 10.1016/j.agee.2011.10.004.
  • Raciti, S. M., A. J. Burgin, P. M. Groffman, D. N. Lewis, and T. J. Fahey. 2011. Denitrification in suburban lawn soils. Journal of Environment Quality 40 (6):1932–40. doi: 10.2134/jeq2011.0107.
  • Raciti, S. M., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, T. J. Fahey, S. T. A. Pickett, and M. L. Cadenasso. 2011. Accumulation of carbon and nitrogen in residential soils with different land use histories. Ecosystems 14 (2):287–97. doi: 10.1007/s10021-010-9409-3.
  • Rosenberg, M. 2018. Rapidly growing Seattle constrains new housing through widespread single-family zoning. Seattle Times. Accessed October 13, 2019. https://www.seattletimes.com/business/real-estate/amid-seattles-rapid-growth-most-new-housing-restricted-to-a-few-areas/
  • Ryals, R., M. Kaiser, M. S. Torn, A. Asefaw, and W. L. Silver. 2014. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology and Biochemistry 68:52–61. doi: 10.1016/j.soilbio.2013.09.011.
  • Scharenbroch, B. C. 2009. A meta-analysis of studies published in Arboriculture & Urban Forestry relating to organic materials and impacts on soil, tree, and environmental properties. Arboriculture & Urban Forestry 35:221–31.
  • Scharenbroch, B. C., J. E. Lloyd, and J. L. Johnson-Maynard. 2005. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 49 (4):283–96. doi: 10.1016/j.pedobi.2004.12.002.
  • Scharenbroch, B. C., E. N. Meza, M. Catania, and K. Fite. 2013. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality 42 (5):1372–85. doi: 10.2134/jeq2013.04.0124.
  • Scharenbroch, B. C., J. Morgenroth, and B. Maule. 2016. Tree species suitability to bioswales and impact on the urban water budget. Journal of Environment Quality 45 (1):199–206. doi: 10.2134/jeq2015.01.0060.
  • Sullivan, D. M., A. I. Bary, T. J. Nartea, E. A. Myrhe, C. G. Cogger, and S. C. Fransen. 2003. Nitrogen availability seven years after a high-rate food waste compost application. Compost Science & Utilization 11 (3):265–75. doi: 10.1080/1065657X.2003.10702133.
  • Sullivan, D. M., A. I. Bary, D. R. Thomas, S. C. Fransen, and C. G. Cogger. 2002. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen and tall fescue yield. Soil Science Society of America Journal 66 (1):154–61. doi: 10.2136/sssaj2002.0154.
  • Tester, C. F. 1990. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Science Society of America Journal 54 (3):827–31. doi: 10.2136/sssaj1990.03615995005400030035x.
  • Tian, G., T. C. Granato, F. D. Dinelli, and A. E. Cox. 2008. Effectiveness of biosolids in enhancing soil microbial populations and N mineralization in golf course putting greens. Applied Soil Ecology 40 (2):381–6.
  • Trlica, A., and S. Brown. 2013. Greenhouse gas emissions and the interrelation of urban and forest sectors in reclaiming one hectare of land in the Pacific Northwest. Environmental Science & Technology 47 (13):7250–9. doi: 10.1021/es3033007.
  • US Department of Housing Urban Development. Accessed October 13, 2019. https://www.huduser.gov/portal/publications/pdf/SeattleWA-comp-17.pdf.
  • Wuest, S. P., and C. L. Reardon. 2016. Surface and root inputs produce different carbon/phosphorus ratios in soil. Soil Science Society of America Journal 80 (2):463–71. doi: 10.2136/sssaj2015.09.0334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.