85
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Labile Carbon Affects Fecundity of Omodeoscolex divergens and Eudrilus eugeniae under Pure and Mixed Culture Vermicomposting

, &
Pages 1-15 | Received 16 May 2019, Accepted 05 Feb 2020, Published online: 10 Mar 2020

References

  • Adi, A. J., and Z. M. Noor. 2009. Waste recycling: Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresource Technology 100 (2):1027–30. doi: 10.1016/j.biortech.2008.07.024.
  • Ahemad, M., and M. Saghir Khan. 2011. Assessment of plant growth promoting activities of Rhizobacterium Pseudomonas putida under insecticide-stress. Microbiology Journal 1 (2):54–64. doi: 10.3923/mj.2011.54.64.
  • Aira, M., F. Monroy, and J. Domínguez. 2006. C to N ratio strongly affects population structure of Eisenia fetida in vermicomposting systems. European Journal of Soil Biology 42:S127–S31. doi: 10.1016/j.ejsobi.2006.07.039.
  • Ali, U., N. Sajid, A. Khalid, L. Riaz, M. Muaz Rabbani, J. Hussain Syed, and R. Naseem Malik. 2015. A Review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy 34 (4):1050–62. doi: 10.1002/ep.12100.
  • Andrzejewska, J., F. E. Contreras-Govea, and K. A. Albrecht. 2014. Field prediction of alfalfa (Medicago sativa L.) fibre constituents in Northern Europe. Grass and Forage Science 69 (2):348–55. doi: 10.1111/gfs.12069.
  • Ankom, T. 2017. “NDF Method 13 Neutral Detergent Fiber in Feeds-Filter Bag Technique (for A2000 and A2000I).” Macedon, NY: ANKOM Technology. Accessed 14 July 2018. https://www.ankom.com/sites/default/files/document-files/Method_13_NDF_A2000.pdf.
  • Ansari, A. A., and J. Rajpersaud. 2012. Physicochemical changes during vermicomposting of water Hyacinth (Eichhornia crassipes) and grass clippings. ISRN Soil Science 2012:1–6. doi: 10.5402/2012/984783.
  • Bhat, S. A., J. Singh, and A. P. Vig. 2015. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. SpringerPlus 4 (1):11. doi: 10.1186/s40064-014-0780-y.
  • Blakemore, R. J. 2015. Eco-taxonomic profile of an iconic vermicomposter—The ‘African Nightcrawler’ Earthworm, Eudrilus eugeniae (Kinberg, 1867). African Invertebrates 56 (3):527–48. doi: 10.5733/afin.056.0302.
  • Bremner, M. 1996. Nitrogen-total. In Methods of soil analysis part 3. Chemical methods-SSSA book series 5, ed. D. L. Sparks, A. L. Page, P. A. Helmke, and R. H. Loeppert, Chap. 37, 1085–121. Madison, WI: Soil Science Society of America. doi: 10.2136/sssabookser5.3.c37.
  • Carmo, D. L. d., L. B. de Lima, and C. A. Silva. 2016. Soil fertility and electrical conductivity affected by organic waste rates and nutrient Inputs. Revista Brasileira de Ciência Do Solo 40 (0). Sociedade Brasileira de Ciência do Solo. Accessed 24 February 2020. doi: 10.1590/18069657rbcs20150152.
  • Curry, J. P., and O. Schmidt. 2007. The feeding ecology of earthworms—A review. Pedobiologia 50 (6):463–77. doi: 10.1016/j.pedobi.2006.09.001.
  • Dominguez, J. 2010. The microbiology of vermicomposting. In Vermiculture technology, ed. C. A. Edwards, N. Q. Arancon, and R. L. Sherman, Chap. 5, 53–66. FL: Taylor & Francis Group, LLC.
  • Dominguez, J., and C. A. Edwards. 2010. Biology and ecology of earthworm species used for vermicomposting. In Vermiculture technology, ed. C. A. Edwards, N. Q. Arancon, and R. L. Sherman, Chap. 3, 27–38. Boca Raton, FL: CRC Press. doi: 10.1201/b10453.
  • Edwards, C. A., and N. Q. Arancon. 2004. The use of earthworms in the breakdown of organic wastes. In Earthworm ecology, ed. C. L. Edwards, 2nd ed., 345–71. Florida: CRC Press LLC. doi: 10.1201/9781420039719.
  • Eghball, B., B. J. Wienhold, J. E. Gilley, and R. A. Eigenberg. 2002. Mineralization of manure nutrients. Journal of Soil and Water Conservation 57 (6):470–3. doi: 10.1006/meth.2001.1262.
  • Eriksen-Hamel, N. S., and J. K. Whalen. 2007. Competitive interactions affect the growth of Aporrectodea caliginosa and Lumbricus terrestris (Oligochaeta: Lumbricidae) in single- and mixed-species laboratory cultures. European Journal of Soil Biology 43 (3):142–50. doi: 10.1016/j.ejsobi.2006.11.005.
  • Esaivani, C., B. Esakiammal, R. Nithya, K. Vasanthi, and K. Chairman. 2015. Vermiconversion of leaf wastes (Ficus benghalensis and Ficus racemosa) by employing Eudrilus eugeniae. International Journal of Advanced Research 3 (8):798–806.
  • Ganesh, P. S., S. Gajalakshmi, and S. A. Abbasi. 2009. Vermicomposting of the leaf litter of Acacia (Acacia auriculiformis): Possible roles of reactor geometry, polyphenols, and lignin. Bioresource Technology 100 (5):1819–27. 2008.09.05 1. doi: 10.1016/j.biortech.
  • Garg, V. K., R. Gupta, and A. Yadav. 2008. Potential of vermicomposting technology in solid waste management. In Current developments in solid-state fermentation, ed. A. Pandey, C. R. Soccol, and C. Larroche, 468–511. New York: Springer. doi: 10.1007/978-0-387-75213-6_20.
  • Ghosh, M., G. N. Chattopadhyay, and K. Baral. 1999. Transformation of phosphorus during vermicomposting. Bioresource Technology 69 (2):149–54. doi: 10.1016/S0960-8524(99)80001-7.
  • Godson, S. G. A., and S. Gajalakshmi. 2019. High rate vermicomposting of coral vine by employing three epigeic earthworm species. Nature Environment and Pollution Technology 18 (4):1393–7.
  • Haiba, E., M. Ivask, L. Olle, J. Peda, A. Kuu, S. Kutti, and L. Nei. 2014. Transformation of nutrients and organic matter in vermicomposting of sewage sludge and kitchen wastes. Journal of Agricultural Science 6 (2):114–8. doi: 10.5539/jas.v6n2p114.
  • Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163 (2): 234–42. doi: 10.1016/j.micres.2006.05.009.
  • Helmke, P. A., and D. L. Sparks. 1996. Lithium, Sodium, Potassium, Rubidium, and Cesium. In Methods of Soil Analysis Part 3—Chemical Methods, 551–74. SSSA Book Series SV - 5.3. Madison, WI: Soil Science Society of America, American Society of Agronomy. doi: 10.2136/sssabookser5.3.c19.
  • Illmer, P., and M. Liebensteiner. 2011. Use of avoidance tests for investigating potential of the earthworm Eisenia fetida to improve composting of grass clippings. Compost Science & Utilization 19 (2):123–8. doi: 10.1080/1065657X.2011.10736987.
  • James, S. W., and F. Gamiette. 2016. New species of Dichogaster beddard, 1888 (Clitellata: Benhamiidae) with additional records of earthworms from Guadeloupe (French West Indies). Zootaxa 4178 (3):391. doi: 10.11646/zootaxa.4178.3.5.
  • Jang, S. Y., E. K. Kim, J. H. Park, M. R. Oh, Y. J. Tang, Y. L. Ding, H. J. Seong, W. Ho Kim, Y. Sik Yun, and S. H. Moon. 2017. Effects of physically effective neutral detergent fiber content on dry matter intake, digestibility, and chewing activity in Korean native goats (Capra hircus Coreanae) fed with total mixed ration. Asian-Australasian Journal of Animal Sciences 30 (10):1405–9. doi: 10.5713/ajas.16.0868.
  • Khwairakpam, M., and R. Bhargava. 2010. Vermicomposting of cattle manure using mono- and polycultures of three earthworm species. Dynamic Soil, Dynamic Plant 4 (1):89–95.
  • Kuo, S. 1996. Phosphorus. In Methods of Soil Analysis Part 3-Chemical Methods, edited by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer, 895–97 and 908–9. Wisconsin: Soil Science Society of America & American Society of Agronomy.
  • Li, H. Y., L. Xu, W. J. Liu, M. Q. Fang, and N. Wang. 2014. Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian-Australasian Journal of Animal Sciences 27 (2):194–200. doi: 10.5713/ajas.2013.13446.
  • Li, Y., Q. Lui, F. Liu, P. Zhu, L. Zhang, X. Zhou, C. Sun, and Y. Cheng. 2016. Effects of different ratios of sewage sludge and cattle manure on growth and propagation of Eisenia fetida. PLoS One 11 (6):1–14. doi: 10.1371/journal.pone.0156492.
  • Lim, P. N., T. Y. Wu, C. Clarke, and N. N. Nik Daud. 2015. A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. International Journal of Environmental Science and Technology 12 (8):2533–44. doi: 10.1007/s13762-014-0648-2.
  • Manaig, E. M. 2016. Vermicomposting efficiency and quality of vermicompost with different bedding materials and worm food sources as substrate. Research Journal of Agriculture and Forestry Sciences 4 (1):1–13.
  • Martin, M., and G. Eudoxie. 2018. Feedstock composition influences vermicomposting performance of Dichogaster annae relative to Eudrilus eugeniae and Perionyx excavatus. Environmental Science and Pollution Research 25 (18):17716–25. doi: 10.1007/s11356-018-1853-1.
  • Mpumi, N., K. Mtei, R. Machunda, and P. A. Ndakidemi. 2016. The toxicity, persistence and mode of actions of selected botanical pesticides in Africa against insect pests in common beans, P. Vulgaris: A review. American Journal of Plant Sciences 07 (01):138–51. doi: 10.4236/ajps.2016.71015.
  • Najar, I. A., and A. B. Khan. 2013. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environmental Science and Pollution Research 20 (9):6406–17. doi: 10.1007/s11356-013-1687-9.
  • Nattudurai, G., S. Ezhil Vendan, P. V. Ramachandran, and S. Lingathurai. 2014. Vermicomposting of Coirpith with Cowdung by Eudrilus eugeniae kinberg and its efficacy on the growth of Cyamopsis tetragonaloba (L) Taub. Journal of the Saudi Society of Agricultural Sciences 13 (1):23–7. doi: 10.1016/j.jssas.2012.12.003.
  • Nayeem-Shah, M., S. Gajalakshmi, and S. A. Abbasi. 2014. Direct, rapid and sustainable vermicomposting of the Leaf litter of neem (Azadirachta Indica). Applied Biochemistry and Biotechnology 175 (2): 792–801. doi: 10.1007/s12010-014-1339-7.
  • Ndegwa, P. M., and S. A. Thompson. 2000. Effects of C-to-N ratio on vermicomposting of biosolids. Bioresource Technology 75 (1):7–12. doi: 10.1016/S0960-8524(00)00038-9.
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of soil analysis part 3-chemical methoods, ed. D. L. Sparks, A. L. Page, P. A. Helmke, and R. H. Loeppert, 5th ed., 961–1010. SSSA Book Ser. 5.3. Madison, WI: SSSA. doi: 10.2136/sssabookser5.3.c34.
  • Neuhauser, E. F., R. Hartenstein, and D. L. Kaplan. 1980. Growth of the earthworm Eisenia fetida in relation to population density and food rationing. Oikos 35 (1):93–8. doi:OIKOS 0030-1299/80/040093-06 $02-50/0. doi: 10.2307/3544730.
  • Parthasarathi, K., M. Balamurugan, K. Valappil Prashija, L. Jayanthi, and S. Ameer Basha. 2016. Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. International Journal of Recycling of Organic Waste in Agriculture 5 (1):65–86. doi: 10.1007/s40093-016-0118-6.
  • Pathma, J., and N. Sakthivel. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1 (1):26. doi: 10.1186/2193-1801-1-26.
  • Pratheeban, S., and G. Mikunthan. 2006. Suppressive effect of neem leaves on barnyard earthworm, Eisenia fetida. Neem Research in Sri Lanka: Current Trends and Future Prospects. Accessed 6 February 2016. http://www.researchgate.net/publication/224861993_Suppressive_Effect_of_Neem_Leaves_on_Barnyard_Earthworm_Eisenia_fetida.
  • Raffrenato, E., C. F. Nicholson, and M. E. Van Amburgh. 2019. Development of a mathematical model to predict pool sizes and rates of digestion of 2 pools of digestible neutral detergent fiber and an undigested neutral detergent fiber fraction within various forages. Journal of Dairy Science 102 (1):351–64. doi: 10.3168/jds.2018-15102.
  • Ravindran, B., and P. N. S. Mnkeni. 2016. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida. Environmental Science and Pollution Research 23 (17):16965–76. doi: 10.1007/s11356-016-6873-0.
  • Raza, S. T., Z. Bo, Z. Ali, and T. J. Liang. 2019. Vermicomposting by Eisenia fetida is a sustainable and eco-friendly technology for better nutrient recovery and organic waste management in upland areas of China. Pakistan Journal of Zoology 51 (3):1027–34. doi: 10.17582/journal.pjz/2019.51.3.1027.1034.
  • Rief, A., B. A. Knapp, and J. Seeber. 2012. Palatability of selected alpine plant litters for the decomposer Lumbricus rubellus (Lumbricidae). PLoS One. 7 (9):e45345. doi: 10.1371/journal.pone.0045345.
  • Sawyer, J. E., and A. P. Mallarino. 2012. Nutrient considerations with corn silage and stover harvest. In Integrated Crop Management Conference, 131–35. Iowa: Iowa State University, Digital Press. doi: 10.31274/icm-180809-101.
  • Shak, K. P. Y., T. Y. Wu, S. L. Lim, and C. A. Lee. 2014. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production. Environmental Science and Pollution Research 21 (2):1349–59. doi: 10.1007/s11356-013-1995-0.
  • Sharma, K., and V. K. Garg. 2017. Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environmental Science and Pollution Research 24 (8):7829–36. doi: 10.1007/s11356-017-8438-2.
  • Sharma, K., and V. K. Garg. 2018. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav. ). Bioresource Technology 250:708–15.
  • Silva, L. F. P. e., L. Dagher Cassoli, L. Carlos Roma Junior, A. Carolina de Oliveira Rodrigues, and P. Fernando Machado. 2008. In situ degradability of corn stover and elephant-grass harvested at four stages of maturity. Scientia Agricola 65 (6):595–603. doi: 10.1590/S0103-90162008000600005.
  • Singh, N. B., A. K. Khare, D. S. Bhargava, and S. Bhattacharya. 2006. Effect of initial substrate PH on vermicomposting using Perionyx excavatus (Perrier, 1872). Applied Ecology and Environmental Research 4 (1):85–97. doi: 10.15666/aeer/0401_085097.
  • Sivakumar, S., H. Kasthuri, D. Prabha, P. Senthilkumar, C. V. Subbhuraam, and Y. C. Song. 2009. Efficiency of composting parthenium plant and neem leaves in the presence and absence of an Oligochaete, Eisenia fetida. Iranian Journal of Environmental Health Science and Engineering 6 (3):201–8.
  • Soumaré, M., F. M. G. Tack, and M. G. Verloo. 2003. Characterisation of Malian and Belgian solid waste composts with respect to fertility and suitability for land application. Waste Management 23 (6):517–22. doi: 10.1016/S0956-053X(03)00067-9.
  • Suthar, S. 2008a. Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae kinberg. Ecological Engineering 32 (3):206–14. doi: 10.1016/j.ecoleng.2007.11.002.
  • Suthar, S. 2008b. Microbial and decomposition efficiencies of monoculture and polyculture vermireactors, based on epigeic and anecic earthworms. World Journal of Microbiology and Biotechnology 24 (8):1471–9.
  • Temminghoff, E. E. J. M., and V. j. g. Houba. 2004. DIGESTIONS. In Plant Analysis Procedures, 7–8. Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-2976-9_2.
  • Thompson, W. H., P. B. Leege, P. D. Millner, and M. E. Watson, ed. 2001. Test methods for the examination of composting and compost. Washington, DC: United States Department of Agriculture and United States Composting Council. https://compostingcouncil.org/wp-content/plugins/wp-pdfupload/pdf/34/TMECC.
  • Tiunov, A. V., and S. Scheu. 2004. Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia 138 (1):83–90. doi: 10.1007/s00442-003-1391-4.
  • Uko, O. J., A. H. Obara, and T. N. Kamalu. 2008. Studies on fatty acid composition and comparative response of broiler chicks to dietary neem (Azadirachta indica) seed and palm oils. Nigerian Veterinary Journal 29 (2):1–7. doi: 10.4314/nvj.v29i2.3584.
  • Viji, J., and P. Neelanarayanan. 2014. Earthworms mediated conversion of coir waste (Cocos nucifera) predigested with Pleurotus Sp. under monoculture and polyculture conditions. International Journal of Recent Scientific Research 5 (1):269–76.
  • Xing, M., B. Lv, C. Zhao, and J. Yang. 2015. Towards understanding the effects of additives on the vermicomposting of sewage sludge. Environmental Science and Pollution Research 22 (6):4644–53. doi: 10.1007/s11356-014-3708-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.