1,603
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Recent developments on aqueous sodium-ion batteries

, &
Pages 501-509 | Received 29 Apr 2016, Accepted 10 May 2016, Published online: 25 Jul 2016

References

  • W. H. Zuo, P. Xu, Y. Y. Li and J. P. Liu: ‘Direct growth of bismuth Film as anode for aqueous rechargeable batteries in LiOH, NaOH and KOH electrolytes’, Nanomaterials, 2015, 5, 1756–1765.10.3390/nano5041756
  • H.-X. Yang and J.-F. Qian: ‘Recent development of aqueous sodium ion batteries and their key materials’, J. Inorg. Mater., 2013, 28, 1165–1171.10.3724/SP.J.1077.2013.13388
  • M. D. Slater, D. Kim, E. Lee and C. S. Johnson: ‘Sodium-ion batteries’, Adv. Funct. Mater., 2013, 23, 947–958.10.1002/adfm.v23.8
  • O. Ghodbane, J.-L. Pascal and F. Favier: ‘Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors’, ACS Appl. Mater. Interfaces, 2009, 1, 1130–1139.10.1021/am900094e
  • S. Komaba, A. Ogata and T. Tsuchikawa: ‘Enhanced supercapacitive behaviors of birnessite’, Electrochem. Commun., 2008, 10, 1435–1437.10.1016/j.elecom.2008.07.025
  • J. F. Whitacre, A. Tevar and S. Sharma: ‘Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device’, Electrochem. Commun., 2010, 12, 463–466.10.1016/j.elecom.2010.01.020
  • F. Sauvage, E. Baudrin and J.-M. Tarascon: ‘Study of the potentiometric response towards sodium ions of Na0.44 − xMnO2 for the development of selective sodium ion sensors’, Sens. Actuators B., 2007, 120, 638–644.10.1016/j.snb.2006.03.024
  • J. F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed, S. E. Chun, E. Weber, D. Blackwood, E. Lynch-Bell, J. Gulakowski, C. Smith and D. Humphreys: ‘An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications’, J. Power Sources, 2012, 213, 255–264.10.1016/j.jpowsour.2012.04.018
  • D. J. Kim, R. Ponraj, A. G. Kannan, H.-W. Lee, R. Fathi, R. Ruffo, C. M. Mari and D. K. Kim: ‘Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes’, J. Power Sources, 2013, 244, 758–763.10.1016/j.jpowsour.2013.02.090
  • B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen and Y. Wu: ‘An aqueous rechargeable battery based on zinc anode and Na0.95MnO2’, Chem. Commun., 2014, 50, 1209–1211.10.1039/C3CC48382G
  • B. H. Zhang, Y. Liu, Z. Chang, Y. Q. Yang, Z. B. Wen, Y. P. Wu and R. Holze: ‘Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors’, J. Power Sources, 2014, 253, 98–103.10.1016/j.jpowsour.2013.12.011
  • M. Minakshi: ‘Looking beyond lithium-ion technology – aqueous NaOH battery’, Mater. Sci. Eng. B., 2012, 177, 1788–1792.10.1016/j.mseb.2012.09.003
  • A. B. Bocarsly and S. Sinha: ‘Chemically-derivatized nickel surfaces: synthesis of a new class of stable electrode interfaces’, J. Electroanal. Chem. Interfacial Electrochem., 1982, 137, 157–162.10.1016/0022-0728(82)85075-4
  • K. Itaya, I. Uchida and V. D. Neff: ‘Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues’, Acc. Chem. Res., 1986, 19, 162–168.10.1021/ar00126a001
  • S. Kalwellis-Mohn and E. W. Grabner: ‘A secondary cell based on thin layers of zeolite-like nickel hexacyanometallates’, Electrochim. Acta., 1989, 34, 1265–1269.10.1016/0013-4686(89)87169-5
  • C. D. Wessells, S. V. Peddada, R. A. Huggins and Y. Cui: ‘Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries’, Nano Lett., 2011, 11, 5421–5425.10.1021/nl203193q
  • X. Wu, Y. Cao, X. Ai, J. Qian and H. Yang: ‘A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry’, Electrochem. Commun., 2013, 31, 145–148.10.1016/j.elecom.2013.03.013
  • X. Y. Wu, M. Y. Sun, Y. F. Shen, J. F. Qian, Y. I. Cao, X. P. Ai and H. X. Yang: ‘Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry’. ChemSusChem, 2014, 7, 407–411.10.1002/cssc.201301036
  • M. Minakshi and D. Meyrick: ‘Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage’, J. Alloys Compd., 2013, 555, 10–15.10.1016/j.jallcom.2012.11.203
  • Y. H. Jung, C. H. Lim, J.-H. Kim and D. K. Kim: ‘Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries’, RSC Adv., 2014, 4, 9799–9802.10.1039/c3ra47560c
  • W. Song, X. Ji, Y. Zhu, H. Zhu, F. Li, J. Chen, F. Lu, Y. Yao and C. E. Banks: ‘Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode’. ChemElectroChem, 2014, 1, 871–876.10.1002/celc.v1.5
  • Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, W. Chen and L. Chen: ‘Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries’, Electrochem. Commun., 2012, 14, 86–89.10.1016/j.elecom.2011.11.009
  • H. Qin, Z. P. Song, H. Zhan and Y. H. Zhou: ‘Aqueous rechargeable alkali-ion batteries with polyimide anode’, J. Power Sources, 2014, 249, 367–372.10.1016/j.jpowsour.2013.10.091
  • C. Delmas, F. Cherkaoui, A. Nadiri and P. Hagenmuller: ‘A nasicon-type phase as intercalation electrode: NaTi2(PO4)3’, Mater. Res. Bull., 1987, 22, 631–639.10.1016/0025-5408(87)90112-7
  • S. I. Park, I. Gocheva, S. Okada and J.-I. Yamaki: ‘Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries’, J. Electrochem. Soc., 2011, 158, A1067–A1070.10.1149/1.3611434
  • W. Wu, A. Mohamed and J. F. Whitacre: ‘Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode’, J. Electrochem. Soc., 2013, 160, A497–A504.10.1149/2.054303jes
  • W. Wu, J. Yan, A. Wise, A. Rutt and J. F. Whitacre: ‘Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: carbon nanotubes vs. graphite’, J. Electrochem. Soc., 2014, 161, A561–A567.10.1149/2.059404jes
  • Q. T. Qu, L. L. Liu, Y. P. Wu and R. Holze: ‘Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution’, Electrochim. Acta., 2013, 96, 8–12.10.1016/j.electacta.2013.02.078
  • C. Deng, S. Zhang, Z. Dong and Y. Shang: ‘1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries’, Nano Energy, 2014, 4, 49–55.10.1016/j.nanoen.2013.12.014
  • H. Qin, Z. P. Song, H. Zhan and Y. H. Zhou: ‘Aqueous rechargeable alkali-ion batteries with polyimide anode’, J. Power Sources, 2014, 249, 367–372.10.1016/j.jpowsour.2013.10.091
  • W. Choi, D. Harada, K. Oyaizu and H. Nishide: ‘Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries’, J. Am. Chem. Soc., 2011, 133, 19839–19843.10.1021/ja206961t
  • M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. McDowell, R. A. Huggins, M. F. Toney and Y. Cui: ‘Full open-framework batteries for stationary energy storage’. Nat. Commun., 2014, 5, 3007–3015
  • L. M. Suo, O. Borodin, W. Sun, X. L. Fan, C. Y. Yang, F. Wang, T. Gao, Z. H. Ma, M. Schroeder, A. V. Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu and C. S. Wang: ‘Advanced high-voltage aqueous lithium-ion battery enabled by “Water-in-Bisalt” electrolyte’, Angew. Chem. Int. Ed., 2016, DOI: 10.1002/ange.201602397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.