321
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Corrosion behaviour and surface modification of the β-type biomedical Ti-24Nb-4Zr-8Sn alloys

, , , , &
Pages 668-680 | Received 22 Feb 2016, Accepted 10 Jul 2016, Published online: 26 Aug 2016

References

  • M. Niinomi, M. Nakai and J. Hieda: ‘Development of new metallic alloys for biomedical applications’, Acta Biomater., 2012, 8, 3888–3903.
  • C. Correa, A. Gil-Santos, J. A. Porro, M. Díaz and J. L. Ocaña: ‘Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement’, Mater. Des., 2015, 79, 106–114.
  • H. H. Huang, Y. H. Chiu, T. H. Lee and S. C. Wu: ‘Ion release from NiTi orthodontic wires in artificial saliva with various acidities’, Biomaterials, 2003, 24, 8–15.
  • Y. Okazaki: ‘Effect of friction on anodic polarization properties of metallic biomaterials’, Biomaterials, 2002, 23, 2071–2077.
  • M. A. Khan, R. L. Williams and D. F. Williams: ‘Conjoint corrosion and wear in titanium alloys’, Biomaterials, 1999, 20, 765–772.
  • D. Granchi, E. Cenni, D. Tigani, G. Trisolino, N. Baldini and A. Giunti: ‘Sensitivity to implant materials in patients with total knee arthroplasties’, Biomaterials, 2008, 29, 1494–1500.
  • J. J. Rodríguez-Mercado, R. A. Mateos-Nava and M. A. Altamirano-Lozano: ‘DNA damage induction in human cells exposed to vanadium oxides in vitro’, Toxicol. in Vitro, 2011, 25, 1996–2002.
  • K. Miura, N. Yamada, S. Hanada, T. K. Jung and E. Itoi: ‘The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus’, Acta Biomater., 2011, 7, 2320–2326.
  • M. González, J. Peña, F. J. Gil and J. M. Manero: ‘Low modulus Ti-Nb-Hf alloy for biomedical applications’, Mater. Sci. Eng. C, 2014, 42, 691–695.
  • Y. Okazaki, Y. Ito, K. Kyo and T. Tateishi: ‘Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al’, Mater. Sci. Eng. A, 1996, 213, 138–147.
  • H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda and S. Miyazaki: ‘Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys’, Acta Mater., 2006, 54, 2419–2429.
  • H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki: ‘Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium’, Biomaterials, 2001, 22, 1253–1262.
  • E. Eisenbarth, D. Velten, M. Müller, R. Thull and J. Breme: ‘Biocompatibility of β-stabilizing elements of titanium alloys’, Biomaterials, 2004, 25, 5705–5713.
  • P. Majumdar, S. B. Singh and M. Chakraborty: ‘The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications’, J. Mech. Behav. Biomed., 2011, 4, 1132–1144.
  • H. Yilmazer, M. Niinomi, M. Nakai, J. Hieda, Y. Todaka, T. Akahori: ‘Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion’, J. Mech. Behav. Biomed., 2012, 10, 235–2345.
  • C. R. M. Afonso, P. L. Ferrandini, A. J. Ramirez and R. Caram: ‘High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications’, Acta Biomater., 2010, 6, 1625–1629.
  • J. Fojt, L. Joska, J. Malek and V. Sefl: ‘Corrosion behavior of Ti-39Nb alloy for dentistry’, Mater. Sci. Eng. C, 2015, 56, 532–537.
  • Y. L. Hao, S. J. Li and S. Y. Sun: ‘Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications’, Acta Biomater., 2007, 3, 277–286.
  • Y. L. Hao, S. J. Li and S. Y. Sun: ‘Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys’, Mater. Sci. Eng. A, 2006, 441, 112–118.
  • A. K. Shukla and R. Balasubramaniam: ‘Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid’, Corros. Sci., 2006, 48, 1696–1720.
  • P. F. Gostin, A. Helth, A. Voss, R. Sueptitz, M. Calin, J. Eckert and A. Gebert: ‘Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy’, J. Biomed. Mater. Res. B, 2013, 101, 269–278.
  • I. Milosev, J. Hmeljak, G. Zerjav, A. Cor and J. M. C. Moreno: ‘Quaternary Ti-20Nb-10Zr-5Ta alloy during immersion in simulated physiological solutions: formation of layers, dissolution and biocompatibility’, J. Mater. Sci. Mater. Med., 2014, 25, 1099–1114.
  • I. Milošev, G. Žerjav, J. M. Calderon Moreno and M. Popa: ‘Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy’, Electrochim. Acta, 2013, 99, 176–189.
  • L. Jin, W. F. Cui, X. Song, G. Liu and L. Zhou: ‘Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy’, Trans. Nonferrous. Metal. Soc., 2014, 24, 2529–2535.
  • I. Watanabe and E. Watanabe: ‘Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires’, Am. J. Orthod. Dentofac., 2003, 123, 653–656.
  • Y. J. Bai, Y. B. Wang, Y. Cheng, F. Deng, Y. F. Zheng and S. C. Wei: ‘Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions’, Mater. Sci. Eng. C, 2011, 31, 702–711.
  • T. H. Lee, C. C. Wang, T. K. Huang, L. K. Chen, M. Y. Chou and H. H. Huang: ‘Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva’, J. Alloys Compd., 2009, 488, 482–489.
  • Y. Bai, Y. L. Hao, S. J. Li, Y. Q. Hao, R. Yang and F. Prima: ‘Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions’, Mater. Sci. Eng. C, 2013, 33, 2159–2167.
  • J. Pouilleau, D. Devilliers, F. Garrido and S. DurandVidal: ‘Structure and composition of passive titanium oxide films’, Mater. Sci. Eng. B, 1997, 47, 235–243.
  • C. E. Marino, E. M. de Oliveira, R. C. Rocha and S. R. Biaggio: ‘On the stability of thin-anodic-oxide films of titanium in acid phosphoric media’, Corros. Sci., 2001, 43, 1465–1476.
  • Y. Bai, S. J. Li, F. Prima, Y. L. Hao and R. Yang: ‘Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn alloy in a simulated physiological environment’, Appl. Surf. Sci., 2012, 258, 4035–4040.
  • A. K. Shukla, R. Balasubramaniam and S. Bhargava: ‘Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions’, Intermetallics, 2005, 13, 631–637.
  • R. M. Souto, M. M. Laz and R. L. Reis: ‘Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy’, Biomaterials, 2003, 24, 4213–4221.
  • N. Figueira, T. M. Silva, M. J. Carmezim and J. C. S. Fernandes: ‘Corrosion behaviour of NiTi alloy’, Electrochim. Acta, 2009, 54, 921–926.
  • J. E. G. Gonzalez and J. C. Mirza-Rosca: ‘Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications’, J. Electroanal. Chem., 1999, 471, 109–115.
  • S. Tamilselvi, R. Murugaraj and N. Rajendran: ‘Electrochemical impedance spectroscopic studies of titanium and its alloys in saline medium’, Mater. Corros., 2007, 58, 113–120.
  • A. Robin and J. P. Meirelis: ‘Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva’, Mater. Corros., 2007, 58, 173–180.
  • M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. S. Lopez and J. Mirza-Rosca: ‘Corrosion susceptibility of implant materials Ti-5Al-4V and Ti-6Al-4Fe in artificial extra-cellular fluids’, Electrochim. Acta, 2004, 49, 2113–2121.
  • S. Assis, S. Wolynec and I. Costa: ‘Corrosion characterization of titanium alloys by electrochemical techniques’, Electrochim. Acta, 2006, 51, 1815–1819.
  • R. Venugopalan, J. J. Weimer, M. A. George and L. C. Lucas: ‘The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti-6Al-4V alloy’, Biomaterials, 2000, 21, 1669–1677.
  • A. M. Fekry and R. M. Ei-Sherif: ‘Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid’, Electhochim. Acta, 2009, 54, 7280–7285.
  • R. Balasubramaniam and A. K. Shukla: ‘Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid’, Corros. Sci., 2006, 48, 1696–1720.
  • Y. J. Bai, Y. B. Wang, Y. Cheng, F. Deng, Y. F. Zheng and S. C. Wei: ‘Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions’, Mater. Sci. Eng. C, 2011, 31, 702–711.
  • A. Dalmau, V. G. Pina, F. Devesa, V. Amigo and A. I. Munoz: ‘Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution’, Mater. Sci. Eng. C, 2015, 48, 55–62.
  • Y. F. Zheng, B. L. Wang, J. G. Wang, C. LI, L. C. Zhao: ‘Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions’, Mater. Sci. Eng. A, 2006, 438–440, 5–11.
  • M. Metikos-Hukovic, A. Kwokal and J. Piljac: ‘The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution’, Biomaterials, 2003, 24, 3765–3775.
  • Y. Sy and J. R. Scully: ‘Corrosion and passivity of Ti-13% Nb-13% Zr in comparison to other biomedical implant alloys’, Corrosion, 1997, 53, 965–976.
  • K. S. Kumar, H. Van Swygenhoven and S. Suresh: ‘Mechanical behavior of nanocrystalline metals and alloys’, Acta Mater., 2003, 51, 5743–5774.
  • J. W. Park, Y. J. Kim, C. H. Park, D. H. Lee, Y. G. Ko and J. H. Jang: ‘Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography’, Acta Biomater., 2009, 5, 3272–3280.
  • R. Huang and Y. Han: ‘The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy’, Mater. Sci. Eng. C, 2013, 33, 2353–2359.
  • Y. L. Hao, S. J. Li, S. Y. Sun and R. Yang: ‘Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys’, Mater. Sci. Eng. A, 2006, 441, 112–118.
  • S. J. Li, Y. W. Zhang, B. B. Sun, Y. L. Hao and R. Yang: ‘Thermal stability and mechanical properties of nanostructured Ti-24Nb-4Zr-7.9Sn alloy’, Mater. Sci. Eng. A, 2008, 480, 101–108.
  • J. Li, S. J. Li, Y. L. Hao, H. H. Huang, Y. Bai and Y. Q. Hao: ‘Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution’, Acta Biomater., 2014, 10, 2866–2875.
  • A. Balyanov, J. Kutnyakova, N. A. Amirkhanova, V. V. Stolyarov, R. Z. Valiev and X. Z. Liao: ‘Corrosion resistance of ultra fine-grained Ti’, Scr. Mater., 2004, 51, 225–229.
  • H. Garbacz, M. Pisarek and K. J. Kurzydłowski: ‘Corrosion resistance of nanostructured titanium’, Biomol. Eng., 2007, 24, 559–563.
  • J. Li: ‘Effect of nanostructuring on the electrochemical corrosion behavior of Ti2448 alloy’, PhD dissertation, Institute of Metal Research, Chinese Academy of Sciences, ShenYang, 2014, 95–99.
  • H. Ishizawa and M. Ogino: ‘Formation and characterization of anodic titanium-oxide films containing Ca and P’, J. Biomed. Mater. Res., 1995, 29, 65–72.
  • H. J. Oh, J. H. Lee, Y. Jeong, Y. J. Kim and C. S. Chi: ‘Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method’, Surf. Coat. Technol., 2005, 198, 247–252.
  • H. Wu, X. Lu, B. Long, X. Wang, J. Wang and Z. Jin: ‘The effects of cathodic and anodic voltages on the characteristics of porous nanocrystalline titania coatings fabricated by microarc oxidation’, Mater. Lett., 2005, 59, 370–375.
  • Y. Han, S. H. Hong and K. Xu: ‘Structure and in vitro bioactivity of titania-based films by micro-arc oxidation’, Surf. Coat. Technol., 2003, 168, 249–258.
  • X. J. Tao, S. J. Li, C. Y. Zheng, J. Fu, Z. Guo and Y. L. Hao: ‘Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation’, Mater. Sci. Eng. C, 2009, 29, 1923–1934.
  • M. Montazeri, C. Dehghanian, M. Shokouhfar and A. Baradaran: ‘Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti6Al4V alloy and its corrosion behavior’, Appl. Surf. Sci., 2011, 257, 7268–7275.
  • Y. Bai, I. S. Park, S. J. Lee, T. S. Bae, W. Duncan and M. Swain: ‘One-step approach for hydroxyapatite-incorporated TiO2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition’, Appl. Surf. Sci., 2011, 257, 7010–7018.
  • F. Liu, J. L. Xu, D. Z. Yu, F. P. Wang and L. C. Zhao: ‘Effects of cathodic voltages on the structure and properties of ceramic coatings formed on NiTi alloy by micro-arc oxidation’, Mater. Chem. Phys., 2010, 121, 172–177.
  • J. X. Tao: ‘Synthesis of a bioactive oxide layer on a Ti2448 alloy by micro-arc oxidation’, PhD dissertation, Institute of Metal Research, Chinese Academy of Sciences, ShenYang, 2008, 76–78.
  • M. Fazel, H. R. Salimijazi, M. A. Golozar and M. R. Garsivaz jazi: ‘A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process’, Appl. Surf. Sci., 2015, 324, 751–756.
  • M. Wei, M. Uchida, H. M. Kim, T. Kokubo and T. Nakamura: ‘Apatite-forming ability of CaO-containing titania’, Biomaterials, 2002, 23, 167–172.
  • X. Han, H. C. Liu, D. S. Wang, S. J. Li, R. Yang, X. J. Tao, and X. H. Jiang: ‘In vitro biological effects of Ti2448 alloy modified by micro-arc oxidation and alkali heatment’, J. Mater. Sci. Technol., 2011, 27, 317–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.