802
Views
24
CrossRef citations to date
0
Altmetric
Research Papers

High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder

, &
Pages 598-605 | Received 23 Dec 2016, Accepted 09 Feb 2017, Published online: 15 Mar 2017

References

  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–935.10.1126/science.1212741
  • Sun YK, Chen ZH, Noh HJ, et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater. 2012;11(11):942–947.10.1038/nmat3435
  • Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652–657.10.1038/451652a
  • Lu J, Lee KS. Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Mater Technol. 2016;31(11):628–641.10.1080/10667857.2016.1208957
  • Yuan FW, Yang HJ, Tuan HY. Alkanethiol-passivated Ge nanowires as high-performance Anode materials for lithium-ion batteries: the role of chemical surface functionalization. ACS Nano. 2012;6(11):9932–9942.10.1021/nn303519g
  • Sim SJ, Choi YJ, Ha JH, et al. Physical and electrochemical properties of nanostructured nickel sulphide as cathode material for lithium ion batteries. Mater Technol. 2012;27(1):95–97.10.1179/175355511X13240279339644
  • Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587–603.10.1021/cm901452z
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367.10.1038/35104644
  • Yang M, Zhao XY, Yao C, et al. Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries. Mater Technol. 2016;31(9):537–543.10.1080/10667857.2016.1192372
  • Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chem Rev. 2014;114(23):11636–11682.10.1021/cr500192f
  • Palomares V, Serras P, Villaluenga I, et al, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5(3):5884–5901.10.1039/c2ee02781j
  • Van Noorden R. A better battery. Nature. 2014;507(7490):26–28.10.1038/507026a
  • Xu J, Lee DH, Meng YS. Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett. 2014;45(2):30001.
  • Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources. 2011;196(3):1593–1598.10.1016/j.jpowsour.2010.08.056
  • Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path. Energy Environ Sci. 2013;6(8):2312–2337.10.1039/c3ee41031e
  • Kundu D, Talaie E, Duffort V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Edit. 2015;54(11):3431–3448.10.1002/anie.201410376
  • Hong SY, Kim Y, Park Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci. 2013;6(7):2067–2081.10.1039/c3ee40811f
  • Jian ZL, Zhao B, Liu P, et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215–1217.10.1039/C3CC47977C
  • Lu YY, Zhang N, Zhao Q, et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale. 2015;7(6):2770–2776.10.1039/C4NR06432A
  • Liu YG, Cheng ZY, Sun HY, et al. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources. 2015;273:878–884.10.1016/j.jpowsour.2014.09.121
  • Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011–A1014.10.1149/1.3607983
  • Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338–2360.10.1039/c3ee40847g
  • Sangster J. C-Na (Carbon-Sodium) system. J Phase Equilib Diff. 2007;28(6):571–579.10.1007/s11669-007-9194-7
  • Wang LL, Cheng W, Gong HX, et al. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J Mater Chem. 2012;22(22):11297–11302.10.1039/c2jm31023f
  • Wang J, Liu YC, Wang SY, et al. Facile fabrication of pompon-like hierarchical CuO hollow microspheres for high-performance lithium-ion batteries. J Mater Chem A. 2014;2(5):1224–1229.10.1039/C3TA14135G
  • Zhang Z, Feng JK, Ci LJ, et al. Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. Mater Technol. 2016;31(9):497–500.10.1080/10667857.2016.1189024
  • Liu Y, Qiao Y, Zhang WX, et al. Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. J Alloys Compd. 2014;586:208–215.
  • Cheng FY, Chen J. Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem. 2011;21(27):9841–9848.10.1039/c0jm04239k
  • Chou SL, Wang JZ, Wexler D, et al. High-surface-area alpha-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J Mater Chem. 2010;20(11):2092–2098.10.1039/b922237e
  • Zhang Q, Uchaker E, Candelaria SL, et al. Nanomaterials for energy conversion and storage. Chem Soc Rev. 2013;42(7):3127–3171.10.1039/c3cs00009e
  • Liu DW, Cao GZ. Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci. 2010;3(9):1218–1237.10.1039/b922656g
  • Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010;195(9):2419–2430.10.1016/j.jpowsour.2009.11.048
  • Chen CC, Dong YY, Li SY, et al. Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate sodium ion battery. J Power Sources. 2016;320:20–27.10.1016/j.jpowsour.2016.04.063
  • Wang XJ, Liu YC, Wang YJ, et al. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties. Small. 2016;12(35):4865–4872.10.1002/smll.v12.35
  • Wang X, Tang DM, Li HQ, et al. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Chem Commun. 2012;48(40):4812–4814.10.1039/c2cc30643c
  • Xiang JY, Tu JP, Zhang L, et al. Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim Acta. 2010;55(5):1820–1824.
  • Debart A, Dupont L, Poizot P, et al. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc. 2001;148(11):A1266–A1274.10.1149/1.1409971
  • Wang LJ, Zhang K, Hu Z, et al. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014;7(2):199–208.10.1007/s12274-013-0387-6
  • Martin L, Martinez H, Poinot D, et al. Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. J Power Sources. 2014;248:861–873.10.1016/j.jpowsour.2013.10.015
  • Wu CK, Yin M, O’Brien S, et al. Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem Mater. 2006;18(25):6054–6058.10.1021/cm061596d
  • Guo P, Song HH, Chen XH. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun. 2009;11(6):1320–1324.10.1016/j.elecom.2009.04.036
  • Qu BH, Ma CZ, Ji G, et al. Layered SnS2-reduced graphene oxide composite–a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater. 2014;26(23):3854–3859.10.1002/adma.201306314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.