Publication Cover
Materials Technology
Advanced Performance Materials
Volume 32, 2017 - Issue 9
388
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Enhanced visible-light-driven photocatalytic activity of CeVO4/graphitic C3N4 photocatalysts for organic dye degradation

, , , , , , , , & show all
Pages 574-583 | Received 09 Dec 2016, Accepted 16 Apr 2017, Published online: 28 Apr 2017

References

  • Wang YJ, Wang ZX, Muhammad S, et al. Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light. CrystEngComm. 2012;14:5065–5070.10.1039/c2ce25517k
  • Yin SM, Han JY, Zhou TH, et al. Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal Sci Technol. 2015;5:5048–5061.
  • Bu YY, Chen ZY, Li WB. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B: Environ. 2014;144:622–630.10.1016/j.apcatb.2013.07.066
  • Wen CL, Zhang HT, Bo QB, et al. Facile synthesis organic–inorganic heterojunctions of HSbO3/g-C3N4 as efficient visible-light-driven photocatalyst for organic degradation. Chem Eng J. 2015;270:405–410.10.1016/j.cej.2015.01.082
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants, Mater Sci Technol-lond. 2008;24:589–595.10.1179/174328408X282065
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system. Mater Sci Eng B. 2005;119:144–151.10.1016/j.mseb.2005.02.043
  • Yu Q, Guo S, Li X, et al. Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light. Mater Technol. 2014;29:172–178.10.1179/1753555714Y.0000000126
  • Xing H, Ma H, Fu Y, et al. Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity. Mater Technol. 2015;30:122–127.10.1179/1753555714Y.0000000216
  • Li ZS, Yang SY, Zhou JM, et al. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem Eng J. 2014;241:344–351.10.1016/j.cej.2013.10.076
  • Lan ZA, Zhang GG, Wang XC. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl Catal B: Environ. 2016;192:116–125.10.1016/j.apcatb.2016.03.062
  • Liu H, Xu ZZ, Zhang Z, et al. Highly efficient photocatalytic H2 evolution from water over CdLa2S4/mesoporous g-C3N4 hybrids under visible light irradiation. Appl Catal B: Environ. 2016;192:234–241.10.1016/j.apcatb.2016.03.074
  • Li YF, Zhao YZ, Fang L, et al. Highly efficient composite visible light-driven Ag–AgBr/g-C3N4 plasmonic photocatalyst for degrading organic pollutants. Mater Lett. 2014;126:5–8.
  • Ong WJ, Putri LK, Tan LL, et al. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B: Environ. 2016;180:530–543.10.1016/j.apcatb.2015.06.053
  • Bai Y, Ye LQ, Wang L, et al. g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion. Appl Catal B: Environ. 2016;194:98–104.10.1016/j.apcatb.2016.04.052
  • Xu H, Yan J, Xu YG, et al. Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B: Environ. 2016;129:182–193.
  • Liu YM, Wang JP, Yang P. Photochemical reactions of g-C3N4-based heterostructured composites in rhodamine B degradation under visible light. RSC Adv. 2016;6:34334–34341.10.1039/C6RA04430A
  • Liu Q, Chen TX, Guo YR, et al. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B: Environ. 2016;193:248–258.10.1016/j.apcatb.2016.04.034
  • Wu SZ, Li K, Zhang WD. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl Surf Sci. 2015;324:324–331.10.1016/j.apsusc.2014.10.161
  • Li TT, Zhao LH, He YM, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl Catal B: Environ. 2013;129:255–263.10.1016/j.apcatb.2012.09.031
  • Tian YL, Chang BB, Yang ZC, et al. Graphitic carbon nitride–BiVO4 heterojunctions: simple hydrothermal synthesis and high photocatalytic performances. RSC Adv. 2014;4:4187–4193.10.1039/C3RA46079G
  • Tian N, Huang HW, He Y, et al. Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 2015;44:4297–4307.10.1039/C4DT03905J
  • Nong QY, Cui M, Lin HJ, et al. Fabrication, characterization and photocatalytic activity of g-C3N4 coupled with FeVO4 nanorods. RSC Adv. 2015;5:27933–27939.10.1039/C5RA01484K
  • Cai J, He YM, Wang XX, et al. Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation. RSC Adv. 2013;3:20862–20868.10.1039/c3ra43592j
  • Xu J, Hu CG, Liu GB, et al. Synthesis and visible-light photocatalytic activity of NdVO4 nanowires. J Alloy Compd. 2011;509:7968–7972.10.1016/j.jallcom.2011.05.051
  • He YM, Cai J, Li TT, et al. Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation. Ind Eng Chem Res. 2012;51:14729–14737.10.1021/ie301774e
  • Shah AH, Liu YL, Jin W, et al. Highly selective ethanol sensing properties of hydrothermally synthesized cerium orthovanadate (CeVO4) nanorods. Mater Lett. 2015;154:144–147.10.1016/j.matlet.2015.04.077
  • Chen LM. Hydrothermal synthesis and ethanol sensing properties of CeVO4 and CeVO4–CeO2 powders. Mater Lett. 2006;60:1859–1862.10.1016/j.matlet.2005.12.037
  • Deshpande PA, Madras G. Photocatalytic degradation of dyes over combustion-synthesized Ce1−xFexVO4. Chem Eng J. 2010;158:571–577.10.1016/j.cej.2010.01.056
  • Fan CY, Liu QQ, Ma TD, et al. Fabrication of 3D CeVO4/graphene aerogels with efficient visible-light photocatalytic activity. Ceram Int. 2016;42:10487–10492.10.1016/j.ceramint.2016.03.072
  • Yang XJ, Zuo WL, Li F, et al. Surfactant-free and controlled synthesis of hexagonal CeVO4 nanoplates: photocatalytic activity and superhydrophobic property. ChemistryOpen. 2015;4:288–294. 10.1002/open.v4.3
  • Hung LY, Xu H, Li YP, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013;42:8606–8616.10.1039/c3dt00115f
  • Wang L, Ding J, Chai YY, et al. CeO2 nanorod/g-C3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media. Dalton Trans. 2015;44:11223–11234.10.1039/C5DT01479D
  • Chen DM, Wang KW, Ren TZ, et al. Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans. 2014;43:13105–13114.10.1039/C4DT01347F
  • Qin JN, Wang SB, Ren H, et al. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl Catal B: Environ. 2015;179:1–8.10.1016/j.apcatb.2015.05.005
  • Shi L, Liang L, Ma J, et al. Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4composite photocatalysts under visible light. Dalton Trans. 2014;43:7236–7244.10.1039/C4DT00087K
  • Hou Y, Wen ZH, Cui SM, et al. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013;25:6291–6297.10.1002/adma.201303116
  • Yu D, Chen ZD, Wang F, et al. Study on electronegativity and hardness of the elements by density functional theory. Acta Phys Chim Sin. 2001;17:15–22.
  • Zhu TT, Song YH, Ji HY, et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation. Chem Eng J. 2015;271:96–105.10.1016/j.cej.2015.02.018
  • Dai K, Lu LH, Liang CH, et al. Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl Catal B. 2014;156–157:331–340.10.1016/j.apcatb.2014.03.039
  • Tonda S, Kumar S, Shanker V. In situ growth strategy for highly efficient Ag2CO3/g-C3N4hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J Environ Chem Eng. 2015;3:852–861.10.1016/j.jece.2015.03.021
  • Rana S, Rawat J, Sorrenson M, et al. Antibactericidal function of Nd3+ doped-anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2006;2:421–432.10.1016/j.actbio.2006.03.005
  • Rawat J, Rana S, Srivastava RS, et al. Anti-microbial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27:540–545.10.1016/j.msec.2006.05.021
  • Bai XJ, Wang L, Wang YJ, et al. Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Appl Catal B: Environ. 2014;152–153:262–270.10.1016/j.apcatb.2014.01.046
  • Wang XX, Zhang LH, Lin HJ, et al. Synthesis and characterization of a ZrO2/g-C3N4 composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv. 2014;4:40029–40035.10.1039/C4RA06035K
  • Xia JX, Ji MX, Di J, et al. Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight. Appl Catal B: Environ. 2016;191:235–245.10.1016/j.apcatb.2016.02.058
  • Ma SL, Zhan SH, Jia YN, et al. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B: Environ. 2016;186:77–87.10.1016/j.apcatb.2015.12.051
  • Liu W, Wang ML, Xu CX, et al. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem Eng J. 2012;209:386–393.10.1016/j.cej.2012.08.033
  • Wang SM, Li DL, Sun C, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B: Environ. 2014;144:885–892.10.1016/j.apcatb.2013.08.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.