Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 1
344
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Sol-gel combustion synthesis of Ag doped CaSiO3: in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications

&
Pages 38-47 | Received 26 Mar 2017, Accepted 01 Oct 2017, Published online: 19 Oct 2017

References

  • Meiszterics A, Sinkó K. “Sol–gel derived calcium silicate ceramics, Colloids and Surfaces A: Physicochem”. Colloids Surf A. 2008;319:143–148.10.1016/j.colsurfa.2007.08.021
  • Hongjie H, Yuqin Q, Fanhao M, et al. “Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO 2/CaSiO3 coating on titanium”. Colloids Surf B. 2013;101:83–90.
  • Siriphannon P, Hayashi S, Yasumori A, et al . “Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution”. J Mater Res. 1999;14:529–536.10.1557/JMR.1999.0076
  • Wu C, Ramaswamy Y, Boughton P, et al. “Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly (d, l-lactic acid) modification”. Acta Biomater. 2008;4:343–353.10.1016/j.actbio.2007.08.010
  • Yong H, Shuguang H, Xiaofeng P, et al. “Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications”. Appl Surf Sci. 2013;271:299–302.
  • Seyed FSS, Samira G, Hendrik SCM, et al. “Ion size, loading, and charge determine the mechanical properties, surface apatite, and cell growth of silver and tantalum doped calcium silicate”. RSC Adv. 2016;6:190–200.10.1039/C5RA17326D
  • Kalaivani S, Ram KS, Ganesan V, et al. “Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal”. J Mater Chem B. 2014;2:846–858.10.1039/C3TB21522A
  • Lansdown AB. “A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices”. Adv Pharmacol Sci. 2010;910686:16.
  • Archana R, Rakesh CB, Duraipandy N, et al. Ceram Int. 2014;40:10831–10838.
  • Sun D, Shahzad MB, Li M, et al. “Antimicrobial materials with medical applications.” Mater Technol. 2015;30:B90–B95.
  • Girase B, Depan D, Shah JS, et al. “Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity”. Mater Sci Eng C. 2011;31:1759–1766.10.1016/j.msec.2011.08.007
  • Misra RDK, Girase B, Depan D, et al. “Hybrid Nanoscale Architecture for Enhancement of Antimicrobial Activity: Immobilization of Silver Nanoparticles on Thiol‐Functionalized Polymer Crystallized on Carbon Nanotubes”. Adv Eng Mater. 2012;14:B93–B100.10.1002/adem.v14.4
  • Honda M, Kawanobe Y, Ishii K, et al. Mater Sci Eng C. 2013;33:5008–5018.10.1016/j.msec.2013.08.026
  • Yanovska AA, Stanislavov AS, Sukhodub LB, et al. “Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization.”. Mater Sci Eng C. 2014;36:215–220.10.1016/j.msec.2013.12.011
  • Ciobanu CS, Iconaru SL, Pasuk I, et al. “Structural properties of silver doped hydroxyapatite and their biocompatibility”. Mater Sci Eng C. 2013;33:1395–1402.
  • Simona Li, Patrick C, Philippe LC, et al. “Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method”. Sci World J. 2014;11:165351.
  • Yin Y, Zhang X, Wang D, et al. “Study of antibacterial performance of a type 304 Cu bearing stainless steel against airborne bacteria in real life environments.”. Mater Technol. 2015;30:B104–B108.
  • Ma Z, Yao M, Liu R, et al. “Study on antibacterial activity and cytocompatibility of Ti–6Al–4V–5Cu alloy”. Mater Technol. 2015;30:B80–B85.
  • Ma Z, Ren L, Liu R, et al. “Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy”. J Mater Sci Technol. 2015;31:723–732.10.1016/j.jmst.2015.04.002
  • Depan D, Misra RDK. “On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm”. Mater Sci Eng C. 2014;34:221–228.10.1016/j.msec.2013.09.025
  • Yu L, Li J, Wang D, et al. “Improved antimicrobial activity and bioactivity of porous CaP–TiO2 coating through surface nanofunctionalisation”. Mater Technol. 2015;30:B109–B114.
  • Sunkara BK, Misra RDK. “Enhanced antibactericidal function of W 4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system”. Acta Biomater. 2008;4:273–283.10.1016/j.actbio.2007.07.002
  • Rawat J, Rana S, Srivastava R, et al. “Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core”. Mater Sci Eng C. 2007;27:540–545.10.1016/j.msec.2006.05.021
  • Rana S, Rawat J, Misra RDK. “Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO 2–NiFe 2 O 4 biomaterial system”. Acta Biomater. 2005;1:691–703.10.1016/j.actbio.2005.07.007
  • Rana S, Rawat J, Misra RDK. “Antimicrobial function of Nd 3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system”. Acta Biomater. 2006;2:421–432.10.1016/j.actbio.2006.03.005
  • Rawat J, Rana S, Sorensson MM, et al. “Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles”. Mater Sci Technol. 2007;23:97–102.10.1179/174328407X158488
  • Venkatasubramanian R, Srivastava RS, Misra RDK. “Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants”. Mater Sci Technol. 2008;24:589–595.10.1179/174328408X282065
  • Binnaz Yoruc Hazar A. “Preparation and in vitro bioactivity of CaSiO3 powders”. Ceram Int. 2007;33:687–692.
  • Siriphannon P, Kameshima Y, Yasumori A, et al. “Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid”. J Eur Ceram Soc. 2002;22:511–520.10.1016/S0955-2219(01)00301-6
  • Long LH, Chen LD, Bai SQ, et al. “Preparation of dense beta-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body flui”. J Eur Ceram Soc. 2006;26:1701–1706.10.1016/j.jeurceramsoc.2005.03.247
  • Priya S, Larry LH. “Mesoporous calcium silicate glasses. I. Synthesis”. J Non-Cry Solids. 2013;318:1–13.
  • Binnaz Yoruc Hazar A. “Preparation and in vitro bioactivity of CaSiO3 powders”. Ceram Int. 2007;33:687–692.
  • Vichaphund S, Kitiwan M, Atong D, et al. “Microwave synthesis of wollastonite powder from eggshells”. J Eur Ceram Soc. 2011;31:2435–2440.10.1016/j.jeurceramsoc.2011.02.026
  • Lin K, Chang J, Lu J. “Synthesis of wollastonite nanowires via hydrothermal microemulsion methods”. Mater Lett. 2006;60:3007–3010.10.1016/j.matlet.2006.02.034
  • Kokubo T, Kushitani H, Sakka S, et al. “Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3”. J Biomed Mater Res. 1990;24:721–734.10.1002/(ISSN)1097-4636
  • Anjaneyulu U, Sasikumar S. “Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source”. Bull Mater Sci. 2014;37:207–212.10.1007/s12034-014-0646-5
  • Lakshmi R, Sasikumar S. “Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study”. Int J Nanomedicine. 2015;10:129–136.
  • Xuanyong L, Chuanxian D, Paul KC. “Mechanism of apatite formation on wollastonite coatings in simulated body fluids”. Biomaterials. 2004;25:1755–1761.
  • Sainz MA, Pena P, Serena S, et al. “Influence of design on bioactivity of novel CaSiO 3–CaMg (SiO 3) 2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation”. Acta Biomater. 2010;6:2797–2807.10.1016/j.actbio.2010.01.003
  • Stanić V, Janaćković D, Dimitrijević S, et al. “Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering”. Appl Surf Sci. 2011;257:4510–4518.10.1016/j.apsusc.2010.12.113
  • Diaz M, Barba F, Miranda M, et al. “Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite”. J Nanomater. 2009:14.
  • TAN G, Sağlam S, Emül E, et al. “Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications”. Turk J Biol. 2016;40:643–651.10.3906/biy-1505-71
  • Mocanu A, Furtos G, Rapuntean S, et al. “Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles”. Appl Surf Sci. 2014;298:225–235.10.1016/j.apsusc.2014.01.166
  • Prabhu S, Poulose EK. “Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects”. Int Nano Lett. 2012;2:1–10.
  • Jung WK, Koo HC, Kim KW, et al. “Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli”. Appl Environ Microbiol. 2008;74:2171–2178.10.1128/AEM.02001-07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.