Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 1
261
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Effect of calcination temperature on the microstructure and antimicrobial activity of boron and cerium co-doped titania nanomaterials

, , , , , & show all
Pages 48-56 | Received 10 Aug 2017, Accepted 01 Oct 2017, Published online: 24 Oct 2017

References

  • Akhavan O. Lasting antibacterial activities of Ag–TiO2/Ag/a–TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci. 2009;336:117–124.10.1016/j.jcis.2009.03.018
  • Cheng QL, Li CZ, Pavlinek V, et al. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci. 2006;252:4154–4160.10.1016/j.apsusc.2005.06.022
  • Pant HR, Pandeya DR, Nam KT, et al. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 2011;189:465–471.10.1016/j.jhazmat.2011.02.062
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomaterialia. 2007;3:838–850.10.1016/j.actbio.2007.05.011
  • Ren L, Chong J, Loya A, et al. Determination of Cu2+ by joint analysis using ICP-OES and XPS. Mater Technol. 2015;30:86–89.
  • Zhang S, Yang C, Ren G, et al. Study on behaviour and mechanism of Cu2+ ion release from Cu bearing antibacterial stainless steel. Mater Technol. 2015;30:126–132.
  • Wang YZ, Xue XX, Yang H. Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped. Vacuum. 2014;101:193–199.10.1016/j.vacuum.2013.08.006
  • Zhang D, Zhang B, Tang XN, et al. Preparation and characterisation of copper inorganic antibacterial material containing holmium. Mater Technol. 2015;30:133–138.
  • Wang S, Zhu W, Yu P, et al. Antibacterial nanostructured copper coatings deposited on tantalum by magnetron sputtering. Mater Technol. 2015;30:120–125.
  • Yin Y, Zhang X, Wang D, et al. Study of antibacterial performance of a type 304 Cu bearing stainless steel against airborne bacteria in real life environments. Mater Technol. 2015;30:104–108.
  • Sun D, Babar Shahzad M, Li M, et al. Antimicrobial materials with medical applications. Mater Technol. 2015;30:90–95.
  • Ma Z, Yao M, Liu R, et al. Study on antibacterial activity and cytocompatibility of Ti–6Al–4 V–5Cu alloy. Mater Technol. 2015;30:80–85.
  • Girase B, Depan D, Shah JS, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng: C. 2011;31:1759–1766.10.1016/j.msec.2011.08.007
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adavanced Biomater. 2014;14:93–100.
  • He T, Zhu W, Wang X. Polydopamine assisted immobilisation of copper (II) on titanium for antibacterial applications. Mater Technol. 2015;30:68–72.
  • Zimbone M, Buccheri MA, Cacciato G. Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B-Environ. 2015;165:487–494.10.1016/j.apcatb.2014.10.031
  • Gaelle C, Laurent G, Janina MS. Antibacterial textiles functionalized by layer-by-layer assembly of polyelectrolytes and TiO2 photocatalyst. RSC Adv. 2015;5:38859–38867.
  • Urmas J, Katre J, Meeri V. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on escherichia coli cells and fatty acids. J Photochem Photobiol. 2015;142:178–185.
  • Depan D, Misra RDK. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng: C. 2014;34:221–228.10.1016/j.msec.2013.09.025
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti−6Al−4V−5Cu alloy. J Mater Sci Technol. 2015;31:723–732.10.1016/j.jmst.2015.04.002
  • Nune KC, Somani MC, Spencer CT, et al. Cellular response of staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. Mater Technol. 2017;32:22–31.10.1080/10667857.2015.1112572
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomaterialia. 2008;4:273–283.10.1016/j.actbio.2007.07.002
  • Yu L, Li J, Wang D, et al. Improved antimicrobial activity and bioactivity of porous CaP–TiO2 coating through surface nanofunctionalisation. Mater Technol. 2015;30:109–114.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Tehnol. 2008;24:589–595.10.1179/174328408X282065
  • Wang YZ, Yang H, Xue XX. Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum. 2014;107:28–32.10.1016/j.vacuum.2014.03.026
  • Wang YZ, Wu YS, Xue XX, et al. Microstructure and antibacterial activity of ions (Ce, Y, or B)-doped Zn-TiO2: a comparative study. Mater Technol. 2017;32:310–320.10.1080/10667857.2016.1215089
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng: C. 2007;27:540–545.10.1016/j.msec.2006.05.021
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23:97–102.10.1179/174328407X158488
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomaterialia. 2006;2:421–432.10.1016/j.actbio.2006.03.005
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomaterialia. 2005;1:691–703.10.1016/j.actbio.2005.07.007
  • Quinones DH, Rey A, Alvarez PM. Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl Catal B-Environ. 2015;178:74–81.10.1016/j.apcatb.2014.10.036
  • Patel N, Dashora A, Jaiswal R. Experimental and theoretical investigations on the activity and stability of substitutional and interstitial boron in TiO2 photocatalyst. J Phys Chem C. 2015;119:18581–18590.10.1021/acs.jpcc.5b05290
  • Xue XX, Wang YZ, Yang H. Preparation and characterization of boron-doped titania nano-materials with antibacterial activity. Appl Surf Sci. 2013;264:94–99.10.1016/j.apsusc.2012.09.128
  • Yang H, Wang YZ, Xue XX. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials. Colloids Surf B. 2014;122:701–708.10.1016/j.colsurfb.2014.08.003
  • Wang C, Ao YH, Wang QJ. Preparation of cerium and nitrogen co-doped titania hollow spheres with enhanced visible light photocatalytic performance. Powder Tech. 2010;210:203–207.
  • Shen XZ, Liu ZC, Xie SM, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater. 2009;162:1193–1198.10.1016/j.jhazmat.2008.06.004
  • Xu JJ, Ao YH, Fu DG. A novel Ce, C-codoped TiO2 nanoparticles and its photocatalytic activity under visible light. Appl Surf Sci. 2009;256:884–888.10.1016/j.apsusc.2009.08.079
  • Magesh G, Viswanathan B, Viswanath RP, et al. photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J Chem. 2009;48A:480–488.
  • Wang RF, Wang FM, Song JL. Synthesis and photocatalytic activities of rare earth-boron co-doped slice layer TiO2. ACTA Phys-chim Sinica. 2016;32:536–542.
  • Zhang J, Li MJ, Feng ZC. UV, Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B. 2006;110:927–935.10.1021/jp0552473
  • Shi ZM, Jin LN. Influence of La3+/Ce3+-doping on phase transformation and crystal growth in TiO2-15wt% ZnO gels. J Non-Cryst Solids. 2009;355:213–220.10.1016/j.jnoncrysol.2008.10.010
  • Zhang HR, Tan KQ, Zheng HW, et al. Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen. Mater Chem Phys. 2011;125:156–160.10.1016/j.matchemphys.2010.08.087
  • Zhou XS, Peng F, Wang HJ, et al. Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B, N-doped TiO2. J Solid State Chem. 2011;184:134–140.10.1016/j.jssc.2010.10.039
  • Lu XN, Tian BZ, Chen F, et al. Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films. 2010;519:111–116.10.1016/j.tsf.2010.07.071
  • Finazzi E, Valentin CD, Pacchioni G. Boron-doped anatase TiO2: pure andhybrid DFT calculations. J Phys Chem C. 2009;113:220–228.10.1021/jp8072238
  • Gombac V, Rogatis LD, Gasparotto A, et al. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys. 2007;339:111–123.10.1016/j.chemphys.2007.05.024
  • Valentin CD, Pacchioni G. Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal Today. 2013;206:12–18.10.1016/j.cattod.2011.11.030
  • Xue WL, Zhang GW, Xu XF, et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chem Eng J. 2011;167:397–402.10.1016/j.cej.2011.01.007
  • Sonawane RS, Hegde HG, Dongare MK. Preparation of titanium (IV) oxide thin film photocatalyst by sol-gel dip coating. Mater Chem Phys. 2002;77:744–750.
  • Wang C, Ao H, Wang PF. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater. 2010;178:517–521.10.1016/j.jhazmat.2010.01.111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.