Publication Cover
Materials Technology
Advanced Performance Materials
Volume 32, 2017 - Issue 13
132
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Tunable TiO2–pepsin thin film as a low-temperature electron transport layer for photoelectrochemical cells

, , &
Pages 829-837 | Received 08 Aug 2017, Accepted 14 Sep 2017, Published online: 08 Nov 2017

References

  • Green MA, Emery K. Solar cell efficiency tables. Prog Photovoltaics Res Appl. 1993;1:25–29.10.1002/(ISSN)1099-159X
  • Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu (In, Ga) Se2 thin-film solar cells beyond 20%. Prog Photovoltaics Res Appl. 2011;19:894–897.10.1002/pip.1078
  • Ferekides C, Britt J, CdS T-F. CdTe solar cell with 15.8% efficiency. Appl Phys Lett. 1993;62:2851–2852.
  • O’regan B, Grätzel M. Low cost and highly efficient solar cells based on the sensitization of colloidal titanium dioxide. Nature. 1991;335:737–740.
  • Yu G, Gao J, Hummelen JC, et al. Polymer photovoltiac cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789.10.1126/science.270.5243.1789
  • Arjunan TV, Senthil TS. Review: dye sensitised solar cells. Mater Technol. 2013;28:9–14.10.1179/1753555712Y.0000000040
  • Zhou GH, Fu XZ, Luo JL, et al. Ag modified LSCF as cathode material for protonic conducting SOFCs. Mater Technol. 2013;28:3–8.10.1179/1753555712Y.0000000035
  • Arjunan TV, Senthil TS. Review: dye sensitised solar cells. Mater Technol. 2013;28:9–14.10.1179/1753555712Y.0000000040
  • Razykov TM, Amin N, Alghoul M, et al. Revolutionary novel and low cost CMBD method for fabrication of CdTe absorber layer for use in thin film solar cells. Mater Technol. 2013;28:15–20.10.1179/1753555712Y.0000000037
  • Oku T, Takeda A, Nagata A, et al. Microstructures and photovoltaic properties of C60based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. Mater Technol. 2013;28:21–39.
  • Yong X, Zhang P. Theoretical investigations for organic solar cells. Mater Technol. 2013;28:40–64.10.1179/1753555712Y.0000000041
  • Ileperuma OA. Gel polymer electrolytes for dye sensitised solar cells: a review. Mater Technol. 2013;28:65–70.10.1179/1753555712Y.0000000043
  • Thomas KRJ, Baheti A. Fluorene based organic dyes for dye sensitised solar cells: structure–property relationships. Mater Technol. 2013;28:71–87.10.1179/1753555712Y.0000000036
  • Hossain MI, Alharbi FH. Recent advances in alternative material photovoltaics. Mater Technol. 2013;28:88–97.10.1179/1753555712Y.0000000039
  • Suryawanshi MP, Agawane GL, Bhosale SM, et al. CZTS based thin film solar cells: a status review. Mater Technol. 2013;28:98–109.10.1179/1753555712Y.0000000038
  • Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338:643–647.10.1126/science.1228604
  • Im J-H, Lee C-R, Lee J-W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3:4088–4093.10.1039/c1nr10867k
  • Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347:522–525.10.1126/science.aaa0472
  • Zhong D, Cai B, Wang X, et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy. 2015;11:409–418.10.1016/j.nanoen.2014.11.014
  • Burschka J, Pellet N, Moon S-J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319.10.1038/nature12340
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–6051.10.1021/ja809598r
  • Mishra AK, Catalan JA, Camacho D, et al. Evaluation of physics-based numerical modelling for diverse design architecture of perovskite solar cells. Mater Res Exp. 2017;4(8):1–9.
  • Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater. 2014;24:151–157.
  • Salim T, Sun S, Abe Y, et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J Mater Chem A. 2015;3:8943–8969.10.1039/C4TA05226A
  • Leijtens T, Lauber B, Eperon GE, et al. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J Phys Chem Lett. 2014;5:1096–1102.10.1021/jz500209g
  • Ball JM, Lee MM, Hey A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci. 2013;6:1739–1743.10.1039/c3ee40810 h
  • Yang G, Tao H, Qin P, et al. Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A. 2016;4:3970–3990.10.1039/C5TA09011C
  • Wang JT-W, Ball JM, Barea EM, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2013;14:724–730.
  • Mishra AK, Hodges D, Misra RDK. Influence of processing temperature and precursor composition on phase region of solution processed methylammonium lead iodide perovskite. Mater Res Exp. Available from http://iopscience.iop.org/article/10.1088/2053-1591/aa86d7/meta
  • Dürr M, Schmid A, Obermaier M, et al. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater. 2005;4:607–611.10.1038/nmat1433
  • He Y, Zhao G, Peng B, et al. High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct. Adv Funct Mater. 2010;20:3383–3389.10.1002/adfm.201001122
  • Hu X, Li G, Yu JC. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir. 2009;26:3031–3039.
  • Hart JN, Menzies D, Cheng Y-B, et al. Microwave processing of TiO2 blocking layers for dye-sensitized solar cells. J Sol-Gel Sci Technol. 2006;40:45–54.10.1007/s10971-006-8387-6
  • Wojciechowski K, Saliba M, Leijtens T, et al. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci. 2014;7:1142–1147.10.1039/C3EE43707H
  • Li C-Y, Wen T-C, Lee T-H, et al. An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers. J Mater Chem. 2009;19:1643–1647.10.1039/b815523b
  • Hau SK, Yip H-L, Acton O, et al. Interfacial modification to improve inverted polymer solar cells. J Mater Chem. 2008;18:5113–5119.10.1039/b808004f
  • Sun H, Weickert J, Hesse HC, et al. UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol Energy Mater Sol Cells. 2011;95:3450–3454.10.1016/j.solmat.2011.08.004
  • Bi D, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. 2013;5:11686–11691.10.1039/c3nr01542d
  • Kumar MH, Yantara N, Dharani S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun. 2013;49:11089–11091.10.1039/c3cc46534a
  • Son D-Y, Im J-H, Kim H-S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C. 2014;118:16567–16573.10.1021/jp412407j
  • Gao X, Li J, Baker J, et al. Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films. Chem Commun. 2014;50:6368–6371.10.1039/C4CC01864H
  • Qiu J, Qiu Y, Yan K, et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale. 2013;5:3245–3248.10.1039/c3nr00218 g
  • Manseki K, Ikeya T, Tamura A, et al. Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. Rsc Adv. 2014;4:9652–9655.10.1039/C3RA47870 J
  • Guang-Lei T, Hong-Bo H, Jian-Da S. Effect of microstructure of TiO2 thin films on optical band gap energy. Chin Phys Lett. 2005;22:1787.10.1088/0256-307X/22/7/062
  • Li Y, Cooper JK, Liu W, et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat Commun. 2016;7:1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.