Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 3
289
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization and in vivo graft patency of a silk fibroin tubular scaffold

, , , , , & show all
Pages 227-234 | Received 14 Jul 2017, Accepted 12 Nov 2017, Published online: 27 Nov 2017

References

  • Chandy T, Das GS, Wilson RF, et al. Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials. 2000;21:699–712.
  • Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery. 1999;126:847–855.10.1016/S0039-6060(99)70025-5
  • Sun XL, Hao YX, Wang QY, et al. Cell growth and proliferation on theinterface of a silk fabric tubular scaffold. Text Res J. 2016;6:2193–2201.10.1177/0040517515622146
  • Park YR, Ju HW, Lee JM, et al. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int J Biol Macromol. 2016;93:1567–1574.10.1016/j.ijbiomac.2016.07.047
  • Bray LJ, George KA, Ainscough SL, et al. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials. 2011;32:5086–5091.10.1016/j.biomaterials.2011.03.068
  • Liu HF, Fan HB, Wang Y, et al. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008;29:662–674.10.1016/j.biomaterials.2007.10.035
  • Lovett M, Eng G, Kluge JA, et al. Tubular silk scaffolds for small diameter vascular grafts. Organogenesis. 2010;6:217–224.10.4161/org.6.4.13407
  • Aytemiz D, Sakiyama W, Suzuki Y, et al. Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge. Adv Healthcare Mater. 2013;2:361–368.10.1002/adhm.v2.2
  • Catto V, Farè S, Cattaneo I, et al. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro, biodegradability, and in vivo. Mater Sci Eng C. 2015;54 :101–111.10.1016/j.msec.2015.05.003
  • Adalı T, Uncu M. Silk fibroin as a non-thrombogenic biomaterial. Int J Biol Macromol. 2016;90:11–19.10.1016/j.ijbiomac.2016.01.088
  • Wang JN, Wei YL, Yi HG, et al . Cytocompatibility of a silk fibroin tubular scaffold. Mater Sci Eng C. 2014;34:429–436.10.1016/j.msec.2013.09.039
  • Wei YL, Sun D, Yi HG, et al. Preparation and characterization of PEG-DE cross-linked silk fibroin film. J Wuhan Univ Technol Mat Sci Edit. 2014;29:1083–1089.10.1007/s11595-014-1047-8
  • Min SJ, Gao X, Liu L, et al. Fabrication and characterization of porous tubular silk fibroin scaffolds. J Biomat Sci-Polym E. 2009;20:1961–1974.
  • Liu ZW, Huang HY, Yang YX, et al. Construction andanalysis of morphological characteristics of a novelfabric-based silk fibroin vascular prosthesis. Text Bio Eng. Inform Symposium. 2011;151–154.
  • Wei YL, Sun D, Yi HG, et al. Characterization of a PEG-DE cross-linked tubular silk scaffold. Text Res J. 2014;84:959–967.10.1177/0040517513512401
  • Wang JN, Yi HG, Wei YL. Preliminary biocompatibility evaluation of regenerated antheraea yamamai silk fibroin in vitro. J Wuhan Univ Technol-Mat Sci Edit. 2011;26:1044–1048.
  • Dargaville BL, Vaquette C, Rasoul F, et al. Electrospinning and crosslinking of low-molecular-weight poly (trimethylene carbonate-co-L-lactide) as an elastomeric scaffold for vascular engineering. Acta Biomater. 2013;9:6885–6897.10.1016/j.actbio.2013.02.009
  • Zeltinger J, Sherwood JK, Graham DA, et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–572.10.1089/107632701753213183
  • Jeong SI, Kwon JH, Lim JI, et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials. 2005;26:1405–1411.10.1016/j.biomaterials.2004.04.036
  • Lee M, Wu BM, Dunn JCY. Effect of scaffold architecture and pore size on smooth muscle cell growth. Biomed Mater Res A. 2008;87:1010–1016.
  • Riley WA, Barnes RW, Evans GW, et al. Ultrasonic measurement of the elastic modulus of the common carotid artery. Stroke. 1992;23:952–956.10.1161/01.STR.23.7.952
  • Lee SJ, Oh SH, Liu J, et al. The use of thermal treatments to enhance the mechanical properties of electrospun poly(ɛ-caprolactone) scaffolds. Biomaterials. 2008;29:1422–1430.10.1016/j.biomaterials.2007.11.024
  • Wang SD, Zhang YZ, Wang HW, et al. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules. 2009;10:2240–2244.10.1021/bm900416b
  • Hao YX, Sun D, Wang QY, et al. In vitro blood compatibility evaluation of silk fibroin by chemical crosslinking. Mater Technol. 2015;30:327–331.10.1179/1753555715Y.0000000003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.