Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 4
813
Views
3
CrossRef citations to date
0
Altmetric
Research paper

Curcumin-loaded silk fibroin e-gel scaffolds for wound healing applications

Pages 276-287 | Received 25 Apr 2017, Accepted 20 Jan 2018, Published online: 01 Feb 2018

References

  • Anand P, Sundaram C, Jhurani S, et al. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267(1):133–164.10.1016/j.canlet.2008.03.025
  • Gunes H, Gulen D, Mutlu R, et al. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2013;32(2):246–250.
  • Sandur SK, Ichikawa H, Pandey MK, et al. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med. 2007;43(4):568–580.10.1016/j.freeradbiomed.2007.05.009
  • Somparn P, Phisalaphong C, Nakornchai S, et al. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 2007;30(1):74–78.10.1248/bpb.30.74
  • Kulac M, Aktas C, Tulubas F, et al. The effects of topical treatment with curcumin on burn wound healing in rats. J Mol Histol. 2013;44(1):83–90.10.1007/s10735-012-9452-9
  • Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30:85–94.10.1016/j.tips.2008.11.002
  • Maheshwari RK, Singh AK, Gaddipati J, et al. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78:2081–2087.10.1016/j.lfs.2005.12.007
  • El-Refaie WM, Elnaggar YS, El-Massik MA, et al. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: development, in-vitro appraisal and in-vivo studies. Int J Pharm. 2015;486:88–98.10.1016/j.ijpharm.2015.03.052
  • Panchatcharam M, Miriyala S, Gayathri VS, et al. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 2006;290(1–2):87–96.10.1007/s11010-006-9170-2
  • Naz S, Jabeen S, Manzoor S, et al. Antibacterial activity of Curcuma longavarieties against different strains of bacteria. Pak J Bot. 2010;1(42):455–462.
  • Martins CV, da Silva DL, Neres AT, et al. Curcumin as a promising antifungal of clinical interest. J Antimicro Chemother. 2009;63:337–339.
  • Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013;30(4):331–368.10.1615/CritRevTherDrugCarrierSyst.v30.i4
  • Aggarwal BB, Sundaram C, Malani N, et al. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.
  • Mukherjee PK, Venkatesh P, Ponnusankar S. Ethnopharmacology and integrative medicine – let the history tell the future. J Ayurveda Integr Med. 2010;1:100–109.10.4103/0975-9476.65077
  • Balasubramanyam M, Koteswari AA, Kumar RS, et al. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci. 2003;28:715–721.10.1007/BF02708432
  • Kumar V, Lewis SA, Mutalik S, et al. Biodegradable microspheres of curcumin for treatment of inflammation. Indian J Physiol Pharmacol. 2002;46:209–217.
  • Gopinath D, Ahmed MR, Gomathi K, et al. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials. 2004;25(10):1911–1917.10.1016/S0142-9612(03)00625-2
  • Kirker KR, Luo Y, Nielson JH, et al. Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials. 2002;23:3661–3671.10.1016/S0142-9612(02)00100-X
  • Chen Y, Koh LD, Li D, et al. On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J R Soc Interface. 2014;11:20140305.10.1098/rsif.2014.0305
  • Lu Q, Huang Y, Li M, et al. Silk fibroin electrogelation mechanisms. Acta Biomater. 2011;7:2394–2400.10.1016/j.actbio.2011.02.032
  • Nagarkar S, Nicolai T, Chassenieux C, et al. Structure and gelation mechanism of silk hydrogels. Phys Chem Chem Phys. 2010;12:3834–3844.10.1039/b916319 k
  • Kojic N, Panzer MJ, Leisk GG, et al. Ion electrodiffusion governs silk electrogelation. Soft Matter. 2012;8:2897–2905.
  • Li C, Luo T, Zheng Z, et al. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2015;11:222–232.10.1016/j.actbio.2014.08.009
  • Kasoju N, Bora U. Fabrication and characterization of curcumin-releasing silk fibroin scaffold. J Biomed Mater Res B Appl Biomater. 2012;100B(7):1854–1866.10.1002/jbm.b.32753
  • Gong C, Wu Q, Wang Y, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34(27):6377–6387.10.1016/j.biomaterials.2013.05.005
  • Lian Y, Zhan JC, Zhang KH, et al. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold. Front Mater Sci. 2014;8(4):354–362.10.1007/s11706-014-0270-8
  • Liu Y, Sun Q, Wang S, et al. Studies of silk fibroin/Poly(Lactic-Co-Glycolic Acid) scaffold, prepared by thermally induced phase separation, as a possible wound dressing. Sci Adv Mater. 2016;8(5):1045–1052.10.1166/sam.2016.2693
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Poly Sci. 2007;32:991–1007.10.1016/j.progpolymsci.2007.05.013
  • Karahaliloğlu Z, Yalçın E, Demirbilek M, et al. Magnetic silk fibroin e-gel scaffolds for bone tissue engineering applications. J Bioact Compat Polym. 2017;32(6):596–614.10.1177/0883911517693635
  • Li J, Zhang Y-P, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 2003;60:107–114.10.1002/jemt.10249
  • Tredget EE. The basis of fibrosis and wound healing disorders following thermal injury. J Trauma. 2007;62:S69–S69.10.1097/TA.0b013e318065ae84
  • Li X, Qin J, Ma J. Silk fibroin/poly (vinyl alcohol) blend scaffolds for controlled delivery of curcumin. Regen Biomater. 2015;2(2):97–105.10.1093/rb/rbv008
  • Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym Int. 2014;63:100–105.10.1002/pi.2014.63.issue-1
  • Yannas IV. Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clin Mater. 1992;9:179–187.10.1016/0267-6605(92)90098-E
  • Elsner JJ, Kraitzer A, Grinberg O, et al. Highly porous drug-eluting structures. Biomatter. 2012;2(4):239–270.10.4161/biom.22838
  • Sun XZ, Williams GR, Hou XX, Zhu LM. Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr Polym. 2013;94:147–153.10.1016/j.carbpol.2012.12.064
  • Mai Z, Chen J, He T, et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv. 2017;7:1724.10.1039/C6RA25314H
  • Thangaraju E, Srinivasan NT, Kumar R, et al. Fabrication of electrospun Poly-L-lactide and curcumin loaded Poly L-lactide nanofibers for drug delivery. Fibers Polym. 2012;13(823):830.
  • Dhivya S, Padma VV, Santhini E. Wound dressings-a review. Biomedicine. 2015;5(4):77.10.7603/s40681-015-0022-9
  • Queen D, Orsted H, Sanada H, et al. A dressing history. Int Wound J. 2004;1(1):59–77.10.1111/iwj.2004.1.issue-1
  • Kumar A, Wang X, Nune KC, et al. Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. Int Wound J. 2017;14:1076–1087.10.1111/iwj.2017.14.issue-6
  • Osorio M, Velásquez-Cock J, Restrepo LM, et al. Bioactive 3D-shaped wound dressings synthesized from bacterial cellulose: effect on cell adhesion of polyvinyl alcohol integrated in situ. Int J Polymer Sci. 2017; 2017: 1. DOI: 10.1155/2017/3728485
  • Han X, Deng S, Wang N, et al. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells. Food Nutr Res. 2016;60:30616.10.3402/fnr.v60.30616
  • Santel T, Pflug G, Hemdan NY, et al. Curcumin inhibits glyoxalase 1 – a possible link to its anti-inflammatory and anti-tumor activity. PLoS One. 2008;3(10):e3508.10.1371/journal.pone.0003508
  • Strojny B, Grodzik M, Sawosz E, et al. Diamond nanoparticles modify curcumin activity: in vitro studies on cancer and normal cells and in ovo studies on chicken embryo model. PLoS ONE. 2016;11(10):e0164637.10.1371/journal.pone.0164637
  • Leung MHM, Kee TW. Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir. 2009;25(10):5773–5777.10.1021/la804215v
  • Wu C, Fan W, Chang J, Xiao Y. Mussel-inspired porous SiO2 scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering. J Mater Chem. 2011;21:18300–18307.10.1039/c1jm12770e
  • Xu M, Zhang Y, Zhai D, et al. Mussel-inspired bioactive ceramics with improved bioactivity, cell proliferation, differentiation and bone-related gene expression of MC3T3 cells. Biomater Sci. 2013;1:933–941.10.1039/c3bm60028a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.