Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 5
402
Views
9
CrossRef citations to date
0
Altmetric
Review

The significance of macromolecular architecture in governing structure-property relationship for biomaterial applications: an overview

&
Pages 364-386 | Received 26 Jan 2018, Accepted 26 Feb 2018, Published online: 14 Mar 2018

References

  • Tian H, Tang Z, Zhuang X, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37:237–280.10.1016/j.progpolymsci.2011.06.004
  • Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2:307–344.
  • Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharma. 2014;463:127–136.10.1016/j.ijpharm.2013.12.015
  • Li Q, Ma L, Gao C. Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B. 2015;3:8921–8938.10.1039/C5TB01863C
  • Andersen T, Strand BL, Formo K, et al. Alginates as biomaterials in tissue engineering. Carbohydr Chem. 2012;37:227–258.
  • Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193–2221.10.1039/C1CS15203C
  • Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–633.10.1002/(ISSN)1616-5195
  • Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev. 2011;111:4453–4474.10.1021/cr100123 h
  • Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B. 2015;3:8224–8249.10.1039/C5TB01370D
  • Tschan MJL, Brule E, Haquette P, et al. Synthesis of biodegradable polymers from renewable resources. Polym Chem. 2012;3:836–851.10.1039/C2PY00452F
  • Johnson JA, Finn MG, Koberstein JT, et al. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition ‘‘click’’ chemistry. Macromol Rapid Commun. 2008;29:1052–1072.10.1002/marc.v29:12/13
  • Chen H, Kong J. Hyperbranched polymers from A2+B3 strategy: recent advances in description and control of fine topology. Polym Chem. 2016;7:3643–3663.10.1039/C6PY00409A
  • dArcy R, Gennari A, Donno R, et al. Linear, star and comb oxidataion-responsive polymers: effect of branching degree and topology on aggregation and responsiveness. Macromol Rapid Commun. 2016;37:1918–1925.10.1002/marc.201600481
  • Liu S, Dickera KT, Jia X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun. 2015;51:5218–5237.10.1039/C4CC09568E
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.10.1039/C2CS35265F
  • Gao H, Matyjaszewski K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Prog Polym Sci. 2009;34:317–350.10.1016/j.progpolymsci.2009.01.001
  • Southan A, Mateescu M, Hagel V, et al. Toward controlling the formation, degradation behavior, and properties of hydrogels synthesized by Aza-Michael reactions. Macromol Chem Phys. 2013;214:1865–1873.10.1002/macp.v214.16
  • Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv. 2015;5:25014–25050.10.1039/C4RA16103C
  • Read ES, Armes SP. Recent advances in shell cross-linked micelles. Chem Commun. 2007;3021–3035.10.1039/b701217a
  • Yoshida T, Lai TC, Kwon GS, et al. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10:1497–1513.10.1517/17425247.2013.821978
  • Tabujew I, Peneva K. Functionalization of cationic polymers for drug delivery applications. RSC Polym Chem. 2014;13:1–29
  • Vashist A, Vashist A, Gupta YK, et al. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2:147–166.10.1039/C3TB21016B
  • Viegas TX, Bentley MD, Harris JM, et al. Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjugate Chem. 2011;22:976–986.10.1021/bc200049d
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:901–1002.
  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–267.10.1016/j.eurpolymj.2014.11.024
  • Loh XJ, Lee TC, Ito Y. Hydrogels for biomedical applications. Royal Society of Chemistry; 2013, Chapter 8, p. 167–209.
  • Siegwart DJ, Oh JK, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci. 2012;37:18–37.10.1016/j.progpolymsci.2011.08.001
  • Shoichet MS. Polymer scaffolds for biomaterials applications. Macromolecules. 2010;43:581–591.10.1021/ma901530r
  • Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2:3161–3184.10.1039/c4tb00027 g
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–798.10.1016/j.progpolymsci.2007.05.017
  • Deshayes S, Kasko AM. Polymeric biomaterials with engineered degradation. J Polym Sci Part A Polym Chem. 2013;51:3531–3566.10.1002/pola.v51.17
  • Tomlinson R, Klee M, Garrett S. Pendent chain functionalized polyacetals that display pH-dependant degradation: A platform for the development of novel polymer therapeutics. Macromolecules. 2002;35:473–480.10.1021/ma0108867
  • Patil SS, Tawade BV, Wadgaonkar PP. A convenient synthesis of a,a’-homo- and a,a’-hetero-bifunctionalized poly(e-caprolactone)s by ring opening polymerization: the potentially valuable precursors for miktoarm star copolymers. J Polym Sci Part A Polym Chem. 2016;54:844–860.
  • Lecomte P, Jerome C. Recent developments in ring-opening polymerization of lactones. Adv Polym Sci. 2012;245:173–218.
  • Kim H, Olsson JV, Hedrick JL, et al. Facile synthesis of functionalized lactones and organocatalytic ring-opening polymerization. ACS Macro Lett. 2012;1:845–847.
  • Dan K, Ghosh S. One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its ph-responsive vesicular assembly. Angew Chem Int Ed. 2013;52:7300–7305.10.1002/anie.201302722
  • Wang YZ, Deng XX, Li L, et al. One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym Chem. 2013;4:444–448.10.1039/C2PY20927F
  • Jaworska J, Kawalec M, Pastusiak M, et al. Biodegradable polycarbonates containing side carboxyl groups-synthesis, properties and degradation study. J Polym Sci Part A Polym Chem. 2017;55:2756–2769.10.1002/pola.28678
  • Tempelaar S, Mespouille L, Dubois P, et al. Organocatalytic synthesis and postpolymerization functionalization of allyl-functional poly(carbonate)s. Macromolecules. 2011;44:2084–2091.10.1021/ma102882v
  • Fang J, Ye SH, Wang J, et al. Thiol click modfication of cyclic disulfide containing biodegradable polyurethane urea elastomers. Biomacromolecules. 2015;16:1622–1633.10.1021/acs.biomac.5b00192
  • Cai T, Li M, Neoha KG, et al. Preparation of stimuli responsive polycaprolactone membrane of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiol-yne click chemistry. J Mater Chem. 2012;22:16248–16258.10.1039/c2jm33419d
  • Ferris C, dePaz MV, deLeyva ÁngelaAA, et al. Reduction-sensitive functionalized copolyurethanes for biomedical applications. Polym Chem. 2014;5:2370–2381.10.1039/c3py01572f
  • Bae KH, Wang LS, Kurisawa M. Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B. 2013;1:5371–5388.10.1039/c3tb20940 g
  • Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers-the all-in-one talents. Polym Chem. 2014;5:25–36.10.1039/C3PY00880 K
  • Panja S, Dey G, Bharti R, et al. Tailor-made temperature-sensitive micelle for targeted and on-demand release of anticancer drugs. ACS Appl Mater Interfaces. 2016;8:12063–12074.10.1021/acsami.6b03820
  • Tomlinson R, Heller J, Brocchini S, et al. Polyacetal−doxorubicin conjugates designed for ph-dependent degradation. Bioconjugate Chem. 2003;14:1096–1106.10.1021/bc030028a
  • Shi M, Ho K, Keating A, et al. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv Funct Mater. 2009;19:1689–1696.10.1002/adfm.v19:11
  • Matai I, Gopinath P. Chemically cross-linked hybrid nanogels of alginate and PAMAM dendrimers as efficient anticancer drug delivery vehicles. ACS Biomater Sci Eng. 2016;2:213–223.10.1021/acsbiomaterials.5b00392
  • Yan L, Wu W, Zhao W, et al. Reduction-sensitive core-cross-linked mPEG–poly(ester-carbonate) micelles for glutathione-triggered intracellular drug release. Polym Chem. 2012;3:2403–2412.10.1039/c2py20240a
  • Paramonov SE, Bachelder EM, Beaudette TT, et al. Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjugate Chem. 2008;19:911–919.10.1021/bc7004472
  • Fiore GL, Rowan SJ, Weder C. Optically healable polymers. Chem Soc Rev. 2013;42:7278–7288.10.1039/c3cs35471 g
  • Wang H, He J, Zhang M, et al. Biocompatible and acid-cleavable poly(3-caprolactone)- acetal-poly(ethylene glycol)-acetal-poly(3-caprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. J Mater Chem B. 2013;1:6596–6607.10.1039/c3tb21170c
  • Zhuang J, Gordon MR, Ventura J, et al. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev. 2013;42:7421–7435.10.1039/c3cs60094 g
  • Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131:4830–4838.10.1021/ja809475a
  • Yang X, Grailer JJ, Pilla S, et al. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjugate Chem. 2010;21:496–504.10.1021/bc900422j
  • Zhang S, Xu J, Chen H, et al. Acid-cleavable unimolecular micelles from amphiphilic star copolymers for triggered release of anticancer drugs. Macromol Biosci. 2017;17:1600258.10.1002/mabi.v17.3
  • Zhang X, Malhotra S, Molina M, et al. Micro- and nanogels with labile crosslinks-from synthesis to biomedical applications. Chem Soc Rev. 2015;44:1948–1973.10.1039/C4CS00341A
  • Jain R, Standley SM, Frechet JMJ. Synthesis and degradation of pH-sensitive linear poly(amidoamaine)s. Macromolecules. 2007;40:452–457.10.1021/ma062319v
  • Cheng C, Zhang X, Meng Y, et al. Multiresponsive and biocompatible self-healing hydrogel: its facile synthesis in water, characterization and properties. Soft Matter. 2017;13:3003–3012.10.1039/C7SM00350A
  • Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35:278–301.10.1016/j.progpolymsci.2009.10.008
  • Huang X, Du F, Cheng J, et al. Acid-sensitive polymeric micelles based on thermoresponsive block copolymers with pendant cyclic orthoester groups. Macromolecules. 2009;42:783–790.10.1021/ma802138r
  • Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci. 2013;38:503–535.10.1016/j.progpolymsci.2012.07.002
  • Lin C, Lou B, Zhao J, et al. Self-assembled micelles of PEG-poly(disulfide carbamate amine) copolymers for intracellular dual-responsive drug delivery. J Mater Chem B. 2016;4:902–909.10.1039/C5TB01770 J
  • Chen W, Meng F, Li F. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules. 2009;10:1727–1735.10.1021/bm900074d
  • Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun. 2013;49:2082–2102.10.1039/c2cc36589 h
  • Patil SS, Wadgaonkar PP. Temperature and pH dual stimuli responsive PCL-b-PNIPAAm block copolymer assemblies and the cargo release studies. J Polym Sci Part A Polym Chem. 2017;55:1383–1396.10.1002/pola.v55.8
  • Fukushima K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci. 2016;4:9–24.10.1039/C5BM00123D
  • Yu H, Wang Y, Yang H, et al. Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. J Mater Chem B. 2017;5:4121–4127.10.1039/C7TB00746A
  • Chen J, Su Q, Guo R, et al. A multitasking hydrogel based on double dynamic network with quadruple-stimuli sensitiveness, autonomic self-healing property, and biomimetic adhesion ability. Macromol Chem Phys. 2017:1700166.10.1002/macp.v218.15
  • Yan Y, Li M, Yang D, et al. Construction of injectable double-network hydrogels for cell delivery. Biomacromolecules. 2017;18:2128–2138.10.1021/acs.biomac.7b00452
  • Soliman GM, Sharma A, Maysinger D, et al. Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery. Chem Commun. 2011;47:9572–9587.10.1039/c1cc11981 h
  • Palmer LC, Newcomb CJ, Kaltz SR, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–4783.10.1021/cr8004422
  • Truong VX, Ablett MP, Richardson SM, et al. Simultaneous orthogonal dual-click approach to tough, in-situ -forming hydrogels for cell encapsulation. J Am Chem Soc. 2015;137:1618–1622.10.1021/ja511681s
  • Georgiou TK. Star polymers for gene delivery. Polym Int. 2014;63:1130–1133.10.1002/pi.2014.63.issue-7
  • Lin YL, Jiang G, Birrell LK, et al. Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials. 2010;31:7150–7166.10.1016/j.biomaterials.2010.05.048
  • Thakur G, Prashanthi K, Thundat T. Directed self-assembly of proteins into discrete radial patterns. Sci Rep. 2013;3:1923.10.1038/srep01923
  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev. 2012;112:2853–2888.10.1021/cr200157d
  • Sumerlin BS. Proteins as initiators of controlled radical polymerization: graftingfrom via ATRP and RAFT. ACS Macro Lett. 2012;1:141–145.10.1021/mz200176 g
  • Jones MW, Strickland RA, Schumacher FF, et al. Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chem Commun. 2012;48:4064–4066.10.1039/c2cc30259d
  • Aimetti AA, Machen AJ, Anseth KS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30:6048–6054.10.1016/j.biomaterials.2009.07.043
  • Jones MW, Mantovani G, Ryan SM, et al. Phosphine-mediated one-pot thiol-ene “click” approach to polymer-protein conjugates. Chem Commun. 2009;5272–5274.10.1039/b906865a
  • Alves NM, Leonor IB, Azevedo HS, et al. Designing biomaterials based on biomineralization of bone. J Mater Chem. 2010;20:2911–2921.10.1039/b910960a
  • Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomaterialia. 2014;10:2341–2351.10.1016/j.actbio.2014.02.015
  • Long R, Hui CY. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter. 2016;12:8069–8086.10.1039/C6SM01694D
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:19.
  • Hunt JA, Chen R, Veen TV, et al. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B. 2014;2:5319–5338.10.1039/C4TB00775A
  • Yang R, Tan L, Cen L, et al. An injectable scaffod based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Adv. 2016;6:16838–16850.10.1039/C5RA27870H
  • Phadke A, Zhang C, Hwang Y, et al. Templated mineralization of synthetic hydrogels for bone-like composite materials: role of matrix hydrophobicity. Biomacromolecules. 2010;11:2060–2068.10.1021/bm100425p
  • Jin R, Teixeira LSM, Dijkstra PJ, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2544–2551.10.1016/j.biomaterials.2009.01.020
  • Place ES, George JH, Williams CK, et al. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38:1139–1151.10.1039/b811392 k
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.10.1038/boneres.2017.14
  • Hvilsted S. Facile design of biomaterials by ‘click’ chemistry. Polym Int. 2012;61:485–494.10.1002/pi.v61.4
  • Lallana E, Trillo FF, Herves AS, et al. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm Res. 2012;29:902–921.10.1007/s11095-012-0683-y
  • Yun J, Faust R. Effect of architecture on the micellar properties of amphiphilic block copolymers: comparison of AB linear diblock, A1A2B, and A2B heteroarm star block copolymers. Macromolecules. 2003;36:1717–1723.10.1021/ma021618r
  • Cao Z, Wu H, Dong J, et al. Quadruple-stimuli-sensitive polymeric nanocarriers for controlled release under combined stimulation. Macromolecules. 2014;47:8777–8783.10.1021/ma502003v
  • Patil SS, Menon SK, Wadgaonkar PP. A new atom transfer radical polymerization initiator based on phenolphthalein for the synthesis of bis-allyloxy functionalized polystyrene macromonomers. Polym Int. 2015;64:413–420.10.1002/pi.2015.64.issue-3
  • Patil SS, Torris A, Wadgaonkar PP. Healable network polymers bearing flexible poly(lauryl methacrylate) chains via thermo-reversible furan-maleimide diels-alder reaction. J Polym Sci Part A Polym Chem. 2017;55:2700–2712.10.1002/pola.v55.16
  • Booth C, Attwood D. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun. 2000;21:501–527.10.1002/(ISSN)1521-3927
  • Fuks G, Taloma RM, Gauffre F. Biohybrid block copolymers: towards functional micelles and vesicles. Chem Soc Rev. 2011;40:2475–2493.10.1039/c0cs00085j
  • Voorhaar L, Hoogenboom R. Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev. 2016;45:4013–4031.10.1039/C6CS00130 K
  • Xu J, Ye J, Liu S. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules. 2007;40:9103–9110.10.1021/ma0717183
  • Pangilinan K, Advincula R. Cyclic polymers and catenanes by atom transfer radical polymerization (ATRP). Polym Int. 2014;63:803–813.10.1002/pi.4717
  • Jia Z, Monteiro MJ. Cyclic polymers: methods and strategies. J Polym Sci Part A: Polym Chem. 2012;50:2085–2097.10.1002/pola.v50.11
  • Lonsdale DE, Monteiro MJ. Kinetic simulations for cyclization of α, ω-telechelic polymers. J Polym Sci Part A: Polym Chem. 2010;48:4496–4503.10.1002/pola.24240
  • Durmaz H, Dag A, Hizal G, et al. Cyclic homo and block copolymers through sequential double click reactions. J Polym Sci Part A: Polym Chem. 2010;48:5083–5091.10.1002/pola.v48:22
  • Voter AF, Tillman ES. An easy and efficient route to macrocyclic polymers via intramolecular radical−radical coupling of chain ends. Macromolecules. 2010;43:10304–10310.10.1021/ma102319r
  • Jiang L, Ye L, Zhang A, et al. Self-assembly of polyrotaxanes synthesized via click chemistry of azido-endcapped PNIPAAm-b-Pluronic F68-b-PNIPAAm/γ-CD with propargylamine-substituted β-CDs. Macromol Chem Phys. 2014;215:1022–1029.10.1002/macp.v215.10
  • Ren JM, McKenzie TG, Fu Q, et al. Star polymers. Chem Rev. 2016;116:6743–6836.
  • Fan X, Wang Z, He C. “Breathing” unimolecular micelles based on a novel star-like amphiphilic hybrid copolymer. J Mater Chem B. 2015;3:4715–4722.10.1039/C5TB00415B
  • Sowinska M, Lipkowska ZU. Advances in the chemistry of dendrimers. New J Chem. 2014;38:2168–2203.10.1039/c3nj01239e
  • Gonzaga F, Sadowski LP, Rambarran T, et al. Highly efficient divergent synthesis of dendrimers via metal-free “click” chemistry. J Polym Sci Part A Polym Chem. 2013;51:1272–1277.10.1002/pola.26511
  • Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem. 2016;7:5898–5919.10.1039/C6PY01006G
  • Ma XP, Zhou ZX, Jin EL, et al. Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules. 2013;46:37–42.10.1021/ma301849a
  • Beezer AE, King ASH, Martin IK, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron. 2003;59:3873–3880.10.1016/S0040-4020(03)00437-X
  • Devarakonda B, Hill RA, Villiers MMd. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharma. 2004;284:133–140.10.1016/j.ijpharm.2004.07.006
  • Ishida K, Furuhashi Y, Yoshie N. Synthesis of Diels–Alder network polymers from bisfuranic terminated poly(l-lactide) and tris-maleimide. Polymer Degrad Stab. 2014;110:149–155.10.1016/j.polymdegradstab.2014.08.030
  • Cheng X, Peng C, Zhang D, et al. A facile method for the preparation of thermally remendable cross-linked polyphosphazenes. J Polym Sci Part A Polym Chem. 2013;51:1205–1214.10.1002/pola.26489
  • Polgar LM, Duin MV, Broekhuis AA, et al. Use of diels–alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? Macromolecules. 2015;48:7096–7105.10.1021/acs.macromol.5b01422
  • Laquievre A, Barrau S, Fournier D, et al. Thermally reversible crosslinked copolymers: Solution and bulk behavior. Polymer. 2017;117:342–353.10.1016/j.polymer.2017.04.042
  • Kötteritzsch J, Stumpf S, Hoeppener S, et al. One-component intrinsic self-healing coatings based on reversible crosslinking by diels-alder cycloadditions. Macromol Chem Phys. 2013;214:1636–1649.10.1002/macp.v214.14
  • Nimmo CM, Owen SC, Shoichet MS. Diels−alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules. 2011;12:824–830.10.1021/bm101446 k
  • Haldar U, Bauri K, Li R, et al. Polyisobutylene-based pH-responsive self-healing polymeric gels. ACS Appl Mater Interfaces. 2015;7:8779–8788.10.1021/acsami.5b01272
  • Krumova M, Lopez D, Benavente R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer. 2000;41:9265–9272.10.1016/S0032-3861(00)00287-1
  • Liu R, Milani AH, Freemont TJ, et al. Doubly crosslinked pH-responsive microgels prepared by particle inter-penetration: swelling and mechanical properties. Soft Matter. 2011;7:4696–4704.10.1039/c1sm05216 k
  • Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Del Rev. 2001;53:95–108.10.1016/S0169-409X(01)00222-8
  • Yin H, Kang SW, Ba YH. Polymersome formation from AB2 type 3-miktoarm star copolymers. Macromolecules. 2009;42:7456–7464.10.1021/ma901701w
  • Yang H, Zhang Q, Lin B, et al. Thermo-sensitive electrospun fibers prepared by a sequential thiol-ene click chemistry approach. J Polym Sci Part A Polym Chem. 2012;50:4182–4190.10.1002/pola.v50.20
  • Bendtsen ST, Wei M. Synthesis and characterization of a novel injectable alginate-collagen-hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B. 2015;3:3081–3090.10.1039/C5TB00072F
  • Thankam FG, Muthu J, Sankar V, et al. Growth and survival of cells in biosynthetic polyvinyl alcohol-alginate IPN hydrogels for cardiac applications Colloids and Surfaces B: biointerfaces. 2013;107:137–145.
  • Lange RFM, Gurp MV, Meijer EW. Hydrogen-bonded supramolecular polymer networks. J Polym Sci Part A Polym Chem. 1999;37:3657–3670.10.1002/(ISSN)1099-0518
  • Koushaki N, Katbab AA, Tavassoli H, et al. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nanohydroxyapatite, as scaffold for osteochondral regeneration. RSC Adv. 2015;5:9089–9096.10.1039/C4RA10890F
  • Hackelbusch S, Rossow T, Assenbergh PV, et al. Chain dynamics in supramolecular polymer networks. Macromolecules. 2013;46:6273–6286.10.1021/ma4003648
  • Yan X, Xu D, Chi X, et al. A multiresponsive, shapr-persistent and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater. 2012;24:362–369.10.1002/adma.201103220
  • Furusho Y, Endo T, Higaki K, et al. Supramolacular network polymers formed from polyamidine and carboxy-terminated telechelic poly(n-butyl acrylate) via amidinium- carboxylate salt bridges. J Polym Sci Part A Polym Chem. 2016;54:2148–2155.10.1002/pola.v54.14
  • Burek M, Czuba ZP, Waskiewicz S. Novel acid-degradable and thermo-sensitive poly(N-isopropylacrylamide) hydrogels cross-linked by a, a-trehalose diacetals. Polymer. 2014;55:6460–6470.10.1016/j.polymer.2014.10.032
  • Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4:880–887.10.1039/b719557e
  • Shu XZ, Liu Y, Luo Y, et al. Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules. 2002;3:1304–1311.10.1021/bm025603c
  • Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–1294.10.1016/S0142-9612(98)00025-8
  • Li F, Liu Y, Ding Y, et al. A new injectable in situ forming hydroxyapatite and termoresponsive chitosan gel promoted by Na2CO3. Soft Matter. 2014;10:2292–2303.10.1039/C3SM52508B
  • Ren CD, Gao S, Kurisawa M, et al. Cartilage synthesis in hyaluronic acid-tyramine constructs. J Mater Chem B. 2015;3:1942–1956.10.1039/C4TB01229A
  • Almeida HV, Eswaramoorthy R, Cunniffe GM, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stormal cells as an injectable for cartilage regeneration. Acta Biomaterialia. 2016;36:55–62.10.1016/j.actbio.2016.03.008
  • Zhang Y, Fu C, Li Y, et al. Synthesis of an injectable, self healable and dual-responsive hydrogel for drug delivery and 3D cell cultivation. Polym Chem. 2017;8:537–544.10.1039/C6PY01704E
  • Yang F, Wang J, Cao L, et al. Injectable and redox-responsive hydrogel with adaptive degradation rate for bone regeneration. J Mater Chem B. 2014;2:295–304.10.1039/C3TB21103G
  • Halacheva SS, Adlam DJ, Hendow EK, et al. Injectable biocompatible and biodegradable ph-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties. Biomacromolecules. 2014;15:1814–1827.10.1021/bm5002069
  • Bi X, Liang A, Tan Y, et al. Thiol-ene crosslinking polyamidoamine dendrimer-hyaluronic acid hydrogel system for biomedical applications. J Biomater Sci Polym Edn. 2016;27:743–757.10.1080/09205063.2016.1159473
  • Shkilnyy A, Graf R, Hiebl B, et al. Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethyleneimine) hydrogel composites. Macromol Biosci. 2009;9:179–186.10.1002/mabi.v9:2
  • Argun A, Can V, Altun U, et al. Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules. 2014;47:6430–6440.10.1021/ma5014176
  • Bilici C, Can V, Nöchel U, et al. Melt-processable shape-memory hydrogels with self-healing abilityof high mechanical strength. Macromolecules. 2016;49:7442–7449.10.1021/acs.macromol.6b01539
  • Li J, Illeperuma WRK, Suo Z, et al. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014;3:520–523.10.1021/mz5002355
  • Wang K, Nune KC, Misra RDK. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomaterialia. 2016;36:143–151.10.1016/j.actbio.2016.03.016
  • Chen Q, Zhu L, Zhao C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater. 2013;25:4171–4176.10.1002/adma.201300817
  • Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules. 2017;18:316–330.10.1021/acs.biomac.6b01604
  • Mukherjee S, Hill MR, Sumerlin BS. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter. 2015;11:6152–6161.10.1039/C5SM00865D
  • Neamtu I, Rusu AG, Diaconu A, et al. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24:539–557.10.1080/10717544.2016.1276232
  • Steinhilber D, Witting M, Zhang X, et al. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. J Contr Rel. 2013;169:289–295.10.1016/j.jconrel.2012.12.008
  • Zhang X, Achazi K, Steinhilber D, et al. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. J Contr Rel. 2014;174:209–216.10.1016/j.jconrel.2013.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.