Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 8
199
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Bio-mediated synthesis and antibacterial activity against aquatic pathogens of silver nanoparticles decorated titania nanosheets in dark and under solar-light irradiation

, , , , , , , , & show all
Pages 532-542 | Received 09 Mar 2018, Accepted 20 May 2018, Published online: 05 Jun 2018

References

  • Defoirdt T, Sorgeloos P, Bossier P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol. 2011;14(3):251–258.
  • Munoz-Atienza E, Gomez-Sala B, Araujo C, et al. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013;13:15.
  • He T, Zhu W, Wang X, et al. Polydopamine assisted immobilisation of copper(II) on titanium for antibacterial applications. Mater Technol. 2015;30(B2):B68–B72.
  • Wang S, Zhu W, Yu P, et al. Antibacterial nanostructured copper coatings deposited on tantalum by magnetron sputtering. Mater Technol. 2015;30(B2):B120–B125.
  • Ma Z, Yao M, Liu R, et al. Study on antibacterial activity and cytocompatibility of Ti–6Al–4V–5Cu alloy. Mater Technol. 2015;30(B2):B80–B85.
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy. J Mater Sci Technol. 2015;31(7):723–732.
  • Yin Y, Zhang X, Wang D, et al. Study of antibacterial performance of type 304 Cu bearing stainless steel against airborne bacteria in real life environments. Mater Technol. 2015;30(B2):B104–B108.
  • Zhang S, Yang C, Ren G, et al. Study on behaviour and mechanism of Cu2+ ion release from Cu bearing antibacterial stainless steel. Mater Technol. 2015;30(B2):B126–B132.
  • Ren L, Chong J, Loya A, et al. Determination of Cu2+ ions release rate from antimicrobial copper bearing stainless steel by joint analysis using ICP-OES and XPS. Mater Technol. 2015;30(B2):B86–B89.
  • Sun D, Shahzad MB, Li M, et al. Antimicrobial materials with medical applications. Mater Technol. 2015;30(B2):B90–B95.
  • Wang S, Yang K, Shen M, et al. Effect of Cu content on antibacterial activity of 17-4 PH stainless steel. Mater Technol. 2015;30(B2):B115–B119.
  • Zhang D, Zhang B, Tang XN, et al. Preparation and characterisation of copper inorganic antibacterial material containing holmium. Mater Technol. 2015;30(B2):B133–B138.
  • Nune KC, Somani MC, Spencer CT, et al. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surfacebinding and mechanism of disruption of colonization. Mater Technol. 2017;32(1):22–31.
  • Berger TJ, Spadaro JA, Chapin SE, et al. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother. 1976;9(2):357–358.
  • Chen X, Zheng Z, Ke X, et al. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 2010;12(3):414–419.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microb. 2008;74(7):2171–2178.
  • Smetana AB, Klabunde KJ, Marchin GR, et al. Biocidal activity of nanocrystalline silver powders and particles. Langmuir. 2008;24(14):7457–7464.
  • Tang J, Chen Q, Xu L, et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. Acs Appl Mater Inter. 2013;5(9):3867–3874.
  • Kumar A, Vemula PK, Ajayan PM, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7(3):236–241.
  • Bao Q, Zhang D, Qi P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci. 2011;360(2):463–470.
  • Liu C, Wang L, Xu H, et al. “One pot” green synthesis and the antibacterial activity of g-C3N4/Ag nanocomposites. Mater Lett. 2016;164:567–570.
  • Girase B, Depan D, Shah JS, et al. Silver-clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mat Sci Eng C-Mater. 2011;31(8):1759–1766.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14(4):B93–B100.
  • Parham S, Wicaksono DHB, Bagherbaigi S, et al. Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chin Chem Soc. 2016;63(4):385–393.
  • Mukhopadhyay A, Basak S, Das JK, et al. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. Acs Appl Mater Inter. 2010;2(9):2540–2546.
  • Lan MY, Liu CP, Huang HH, et al. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. Plos One. 2013;8(10):e75364–e75364.
  • Yu J, Xiong J, Bei C, et al. Fabrication and characterization of Ag–tiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ. 2005;60(3–4):211–221.
  • Azizi S, Mohamad R, Rahim RA, et al. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl Surf Sci. 2016;384:517–524.
  • Chen SF, Li JP, Qian K, et al. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research. 2010;3(4):244–255.
  • Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO 2 thin film. J Photochem Photobiol A. 2003;156(1–3):227–233.
  • Blake DM, Maness P-C, Huang Z, et al. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Rev. 1999;28(1):1–50.
  • Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol. 1998;32(5):726–728.
  • Nonami T, Hase H, Funakoshi K. Apatite-coated titanium dioxide photocatalyst for air purification. Catalysis Today. 2004;96(3):113–118.
  • Pleskova SN, Golubeva IS, Verevkin YK. Bactericidal activity of titanium dioxide ultraviolet-induced films. Mat Sci Eng C. 2016;59:807–817.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2006;2(4):421–432.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Tech-Lond. 2008;24(5):589–595.
  • Sunkara BK, Misra RD. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2008;4(2):273–283.
  • Rana S, Rawat J, Misra RD. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system. Acta Biomater. 2005;1(6):691–703.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mat Sci and Eng C. 2007;27(3):540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Tech-Lond. 2007;23(1):97–102.
  • Depan D, Misra RD. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mat Sci and Eng C. 2014;34:221–228.
  • Yu L, Li J, Wang D, et al. Improved antimicrobial activity and bioactivity of porous CaP–tiO2 coating through surface nanofunctionalisation. Mater Technol. 2015;30(B2):B109–B114.
  • Yadav HM, Otari SV, Bohara RA, et al. Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A. 2014;294:130–136.
  • Yadav HM, Otari SV, Koli VB, et al. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A. 2014;280:32–38.
  • Etacheri V, Michlits G, Seery MK, et al. A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. Acs Appl Mater Inter. 2013;5(5):1663–1672.
  • Văcăroiu C, Enache M, Gartner M, et al. The effect of thermal treatment on antibacterial properties of nanostructured TiO2 (N) films illuminated with visible light. World J Microb Biot. 2008;25(1):27–31.
  • Hamal DB, Haggstrom JA, Marchin GL, et al. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010;26(4):2805–2810.
  • Kang Q, Lu QZ, Liu SH, et al. A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia coli. Biomaterials. 2010;31(12):3317–3326.
  • Wu TS, Wang KX, Li GD, et al. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material. Acs Appl Mater Inter. 2010;2(2):544–550.
  • Tobaldi DM, Piccirillo C, Pullar RC, et al. Silver-modified nano-titania as an antibacterial agent and photocatalyst. J Phys Chem C. 2014;118(9):4751–4766.
  • Henglein A. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition. J Phys Chem. 1979;83(17):2209–2216.
  • Herrmann JM, Disdier J, Pichat P. Photoassisted platinum deposition on TiO2 powder using various platinum complexes. J Phys Chem. 1986;90(22):6028–6034.
  • Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc. 2009;131(9):3152–3153.
  • Xu H, Wang L, Su H, et al. Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys. 2014;10(1):12–18.
  • Thiel J, Pakstis L, Buzby S, et al. Antibacterial properties of silver-doped titania. Small. 2007;3(5):799–803.
  • Silva RC, Rigaud J, Cheynier V, et al. Procyanidin dimers and trimers from grape seeds. Phytochemistry. 1991;30(4):1259–1264.
  • Cozzoli PD, Comparelli R, Fanizza E, et al. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc. 2004;126(12):3868–3879.
  • Fang WQ, Zhou JZ, Liu J, et al. Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. Chem-A Eur J. 2011;17(5):1423–1427.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microb. 2007;73(6):1712–1720.
  • Chadwick MD, Goodwin JW, Lawson EJ, et al. Surface charge properties of colloidal titanium dioxide in ethylene glycol and water. Colloids Surface A. 2002;203:229–236.
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551.
  • Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
  • Ho CH, Tobis J, Sprich C, et al. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater. 2004;16:957–961.
  • Tobaldi DM, Pullar RC, Gualtieri AF, et al. Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour. Acta Mater. 2013;61(15):5571–5585.
  • Phillips RL, Miranda OR, You CC, et al. Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs. Angewandte Chemie. 2008;47(14):2590–2594.
  • Li Y, Liu L, Qu X, et al. Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly(lactic-co-glycolic acid) coating on porous magnesium scaffold. Mater Technol. 2015;30(B2):B96–B103.
  • Huang HH, Tung KL, Lin YY. Treating Ti containing dental orthodontic wires with nitrogen plasma immersion ion implantation to reduce the metal ions release and bacterial adhesion. Mater Technol. 2015;30(B2):B73–B79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.