Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 14
394
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization and photocatalytic properties of ZnO nanoparticles and cotton fabric modified with ZnO nanoparticles via in-situ hydrothermal coating technique: Dual response

, & ORCID Icon
Pages 884-891 | Received 05 Jun 2018, Accepted 03 Sep 2018, Published online: 28 Sep 2018

References

  • Fang L, Zhang X, Sun D. Chemical modification of cotton Fabrics for improving utilization of reactive dyes. Carbohydr Polym. 2013;91:363–369.
  • Badanova AK, Taussarova BR, Kutzhanova AZ. Hydrophobic finishing of cellulosic textile material. World Appl Sci J. 2014;30(10):1409–1416.
  • Tada H, Nagayama H. Chemical vapor surface modification of porous glass with fluoroalkyl-functional silanes. 1. Characterization of the molecular layer. Langmuir. 1995;11:136–142.
  • Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on −CF3 alignment. Langmuir. 1999;15:4321–4323.
  • Anton D. Surface‐fluorinated coatings. Adv Mater. 1998;10:1197–1205.
  • A F T. Complexes of polyethyleneimine with perfluorinated carboxylic acids: wettability of lamellar structured mesophases. Langmuir. 2000;16:824–828.
  • An Q, Xu W, Hao L, et al. Fabrication of superhydrophobic fabric coating using microphase‐separated dodecafluoroheptyl‐containing polyacrylate and nanosilica. J Appl Polym Sci. 2013;128:3050–3056.
  • Bae GY, Min BG, Jeong YG, et al. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci. 2009;337:170–175.
  • Zhao Y, Xu ZG, Wang XG, et al. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir. 2012;28(15):6328–6335.
  • Mondal S, Pal P, Bal B, et al. Fabrication of two sites hydrophobicity on cotton surface – a fluoropolymerization approach. J Adhes Sci Technol. 2018;32:1965–1974.
  • Li G, Zheng HT, Wang YX, et al. A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers. Polymer. 2010;51:1940–1947.
  • Ma ML, Mao Y, Gupta M, et al. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules. 2005;38(23):9742–9748.
  • Shao D, Gao Y, Cao K, et al. Rapid surface functionalization of cotton fabrics by modified hydrothermal synthesis of ZnO. J Textile Inst. 2016;108:1391–1397.
  • Daneshvar N, Khataee AR, Ghadim A, et al. Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: investigation of operationalparametersandevaluationofspecificelectricalenergyconsumption (SEEC). J Hazard Mater. 2007;148:566–572.
  • Alinsafi A, Khemis M, Pons MN, et al. Electro-coagulation of reactive textile dyes and textile wastewater. Chem Eng Process. 2005;44:461–470.
  • Yadollah A, Abdul HA, Zulkarnain Z, et al. Photocatalytic degradation of p-cresol by zinc oxide under UV irradiation. Int J Mol Sci. 2012;13:302–315.
  • Oda AM, Kadhum SH, Farhood AS, et al. Degradation of congo red solution by zinc oxide/silver composite preheated at different temperatures. J Thermodyn Catal. 2012;5:127–132.
  • Ji-Mei S, Shao-Juan Z, Hu Y, et al. Self-assembly orthorhombic and hexagonal MoO3 microrods and their application in catalytic dyes decoloration. Joumal of Anhui University (Natural Science Edition). 2013;2:7-14.
  • Jiamei G, Can L, Hong Z, et al. Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control. 2013;34:372–377.
  • Abdelkader E, Nadjia L, Ahmed B, et al. Adsorption of Congo red azo dye on nanosized SnO2 derived from sol-gel method. Int J Ind Chem. 2016;7:53–70.
  • Hu A, Lianga R, Zhang X, et al. Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J Photochem Photobiology A: Chem. 2013;256:7–15.
  • Akpan UG, Hameed BH. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J Hazard Mater. 2009;170:520–529.
  • Zhi-Gang J, Kuan-Kuan P, Yan-Hua L, et al. Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag. Trans Nonferrous Met Soc China. 2012;22:873−878.
  • Fan JW, Liu JY, Hong J, et al. The synthesis of nanostructure TiO2 co-doped with N and Fe and their application for micro-polluted source water treatment. Environ Technol. 2009;30:1447–1452.
  • He RL, Wei Y, Cao WB. Preparation of (Fe, N)-doped TiO2 powders and their antibacterial activities under visible light irradiation. J Nanosci Nanotechnol. 2009;9:1094–1097.
  • Chandrasekaran S, Misra RDK. Photonic antioxidant ZnS(Cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol. 2013;28(4):228–233.
  • Jia Z, Misra RDK. Tunable ZnO quantum dots for bioimaging:synthesis and photoluminescence. Mater Technol. 2013;28(4):221–227.
  • Depan D, Misra RDK. Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells. Journal of Biomedical Materials Research A. 2014;102:2934–2941.
  • Hatamie A, Khan A, Golabi M, et al. Zinc oxide nanostructure-modified textile and Its application to biosensing, photocatalysis, and as antibacterial material. Langmuir. 2015;31:10913–10921.
  • Vigneshwaran N, Kumar S, Kathe AA, et al. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology. 2006;17(20):5087–5095.
  • Shafei AE, Abou-Okeil A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydre Polym. 2011;83:920–925.
  • Mao Z, Shi Q, Zhang L, et al. The formation and UV-blocking property of needleshaped ZnO nanorod on cotton fabric. Thin Solid Films. 2009;527:2681–2686.
  • Gubbala S, Misra RDK. Magnetic behaviour of nanocrystalline nickel ferrite: part 2- Effect of dilution. Mater Sci Technol. 2006;22:845–851.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24:589–595.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27:540–545.
  • Pal S, Mondal S, Maity J, et al. Synthesis and characterization of ZnO nanoparticles using moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity. Int J Nanosci Nanotechnol. 2018;14:111–119.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–niFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2– niFe2O4 system. Mater Sci Eng B. 2005;119:144–151.
  • Pal P, Mondal S, Maity J. In situ generation and deposition of ZnO nanoparticles on cotton surface to impart hydrophobicity Investig Antibacterial Activity. Mater Technol. 2018;33(8):555–562.
  • Khan A, Abbasi MA, Hussain M, et al. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl Phys Lett. 2012;101:193506–193511.
  • Cullity BD. Permissible angles for coincidence-sitelattice rotations. Acta Crystallographica Section A. 1979;35:255–259.
  • Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir. 2003;19:8343–8348.
  • Dey D, Kaur G, Patra M, et al. A perfectly linear trinuclear zinc–schiff base complex: synthesis, luminescence property and photocatalytic activity of zinc oxide nanoparticle. Inorganica Chimica Acta. 2014;421:335–341.
  • Kazeminezhad I, Sadollahkhani A. Photocatalytic degradation of Eriochrome black-T dye using ZnO nanoparticles. Mater Lett. 2014;120:267–270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.