Publication Cover
Materials Technology
Advanced Performance Materials
Volume 34, 2019 - Issue 3
365
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Structure-related properties of bionanocomposites based on poly(lactic acid), cellulose nanocrystals and organic impact modifier

ORCID Icon, , , & ORCID Icon
Pages 143-156 | Received 24 Jun 2018, Accepted 21 Oct 2018, Published online: 29 Oct 2018

References

  • Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci. 2009;364:2115–2126.
  • Barnes DK, Galgani F, Thompson RC, et al. Accumulation and fragmentation of plastic debris in global environments. Philosophical Trans Royal Soc B: Biol Sci. 2009;364:1985–1998.
  • Thompson RC, Moore CJ, Vom Saal FS, et al. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 2009;364:2153–2166.
  • Jiménez A, Peltzer M, Ruseckaite R. Poly(lactic acid) science and technology: processing, properties, additives and applications. No. 12. Cambridge: Royal Soc Chem.; 2014.
  • Niaounakis M. Biopolymers: reuse, recycling, and disposal. Oxford: Elsevier/William Andrew; 2013.
  • Zhao H, Cui Z, Sun X, et al. Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res. 2013;52:2569–2581.
  • Ye S, Lin TT, Tjiu WW, et al. Rubber toughening of poly(lactic acid): effect of stereocomplex formation at the rubber-matrix interface. J Appl Polym Sci. 2013;128:2541–2547.
  • Tan BH, Muiruri JK, Li Z, et al. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustainable Chem Eng. 2016;4:5370–5391.
  • Saeidlou S, Huneault MA, Li H, et al. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–1677.
  • Sinclair R. The case for polylactic acid as a commodity packaging plastic. J Macromol Sci A. 1996;33:585–597.
  • Burgos N, Martino VP, Jiménez A. Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab. 2013;98:651–658.
  • Labrecque L, Kumar R, Dave V, et al. Citrate esters as plasticizers for poly (lactic acid). J Appl Polym Sci. 1997;66:1507–1513.
  • Hassouna F, Raquez J-M, Addiego F, et al. New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polym J. 2012;48:404–415.
  • Martino V, Jiménez A, Ruseckaite R. Processing and characterization of poly (lactic acid) films plasticized with commercial adipates. J Appl Polym Sci. 2009;112:2010–2018.
  • Martino V, Ruseckaite R, Jiménez A. Thermal and mechanical characterization of plasticized poly (L-lactide-co-D, L-lactide) films for food packaging. J Therm Anal Calorim. 2006;86:707–712.
  • Jacobsen S, Fritz H-G. Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Eng Sci. 1999;39:1303–1310.
  • Choi K, Choi M-C, Han D-H, et al. Plasticization of poly (lactic acid)(PLA) through chemical grafting of poly (ethylene glycol)(PEG) via in situ reactive blending. Eur Polym J. 2013;49:2356–2364.
  • Chieng BW, Ibrahim NA, Yunus WMZW, et al. Plasticized poly (lactic acid) with low molecular weight poly (ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci. 2013;130:4576–4580.
  • Feng L, Bian X, Chen Z, et al. Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly (ethylene glycol) based copolymers. Polym Degrad Stab. 2013;98:1591–1600.
  • Wu D, Lin D, Zhang J, et al. Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys. 2011;212:613–626.
  • Shuai X, He Y, Asakawa N, et al. Miscibility and phase structure of binary blends of poly (l-lactide) and poly (vinyl alcohol). J Appl Polym Sci. 2001;81:762–772.
  • Noda I, Satkowski MM, Dowrey AE, et al. Polymer alloys of nodax copolymers and poly(lactic acid). Macromol Biosci. 2004;4:269–275.
  • Jiang L, Wolcott MP, Zhang J. Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules. 2006;7:199–207.
  • Chen S, Tsao C, Chou H, et al. Synthesis of poly (lactic acid)-based polyurethanes. Polym Int. 2013;62:1159–1168.
  • Kolstad JJ. Crystallization kinetics of poly (L-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62:1079–1091.
  • Yu F, Liu T, Zhao X, et al. Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci. 2012;125:E99–E109.
  • Nam JY, Okamoto M, Okamoto H, et al. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer. 2006;47:1340–1347.
  • Barrau S, Vanmansart C, Moreau M, et al. Crystallization behavior of carbon nanotube− polylactide nanocomposites. Macromolecules. 2011;44:6496–6502.
  • Li Y, Wang Y, Liu L, et al. Crystallization improvement of poly (L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polymer Sci B: Polymer Phys. 2009;47:326–339.
  • Han Q, Wang Y, Shao C, et al. Nonisothermal crystallization kinetics of biodegradable poly (lactic acid)/zinc phenylphosphonate composites. J Compos Mater. 2014;48:2737–2746.
  • Xu T, Wang Y, Han Q, et al. Nonisothermal crystallization kinetics of poly (lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci B. 2014;53:1680–1694.
  • Bai H, Zhang W, Deng H, et al. Control of crystal morphology in poly (L-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–1237.
  • Kawamoto N, Sakai A, Horikoshi T, et al. Physical and mechanical properties of poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci. 2007;103:244–250.
  • Liao R, Yang B, Yu W, et al. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci. 2007;104:310–317.
  • Liang J-Z, Zhou L, Tang C-Y, et al. Crystalline properties of poly (L-lactic acid) composites filled with nanometer calcium carbonate. Composites Part B: Engineering. 2013;45:1646–1650.
  • Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–2255.
  • Ke T, Sun X. Melting behavior and crystallization kinetics of starch and poly (lactic acid) composites. J Appl Polym Sci. 2003;89:1203–1210.
  • Li H, Huneault MA. Crystallization of PLA/Thermoplastic starch blends. IPP. 2008;23:412–418.
  • Qiu Z, Li Z. Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly (L-lactide) as an efficient nucleating agent. Ind Eng Chem Res. 2011;50:12299–12303.
  • Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – crystallization and mechanical property effects. Compos Sci Technol. 2010;70:815–821.
  • Pracella M, Haque MM-U, Puglia D. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer. 2014;55:3720–3728.
  • Lizundia E, Fortunati E, Dominici F, et al. PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym. 2016;142:105–113.
  • de Paula EL, Roig F, Mas A, et al. Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur Polym J. 2016;84:173–187.
  • Vestena M, Gross IP, Müller CM, et al. Nanocomposite of poly (lactic acid)/cellulose nanocrystals: effect of CNC content on the polymer crystallization kinetics. J Braz Chem Soc. 2016;27:905–911.
  • Gupta A, Simmons W, Schueneman GT, et al. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid). J Therm Anal Calorim. 2016;126:1243–1251.
  • George J, Sabapathi S. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015;8:45–54.
  • Nelson K, Retsina T, Iakovlev M, et al. American process: production of low cost nanocellulose for renewable, advanced materials applications. Materials Research for Manufacturing. Springer; 2016. p. 267–302.
  • Šturcová A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6:1055–1061.
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–3994.
  • Gupta A, Simmons W, Schueneman GT, et al. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustainable Chem Eng. 2017;5:1711–1720.
  • Nagarajan V, Mohanty AK, Misra M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustainable Chem Eng. 2016;4:2899–2916.
  • Zhang K, Nagarajan V, Misra M, et al. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces. 2014;6:12436–12448.
  • Lu X, Wei X, Huang J, et al. Supertoughened poly (lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization. Ind Eng Chem Res. 2014;53:17386–17393.
  • Feng Y, Hu Y, Yin J, et al. High impact poly (lactic acid)/poly (ethylene octene) blends prepared by reactive blending. Polymer Eng Sci. 2013;53:389–396.
  • Ma P, Hristova-Bogaerds D, Goossens J, et al. Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J. 2012;48:146–154.
  • Oyama HT. Super-tough poly (lactic acid) materials: reactive blending with ethylene copolymer. Polymer. 2009;50:747–751.
  • Mohanty AK, Misra M, Drzal LT. Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC Press; 2005.
  • Song P, Chen G, Wei Z, et al. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly (l-lactic acid) with a low optical purity. J Therm Anal Calorim. 2013;111:1507–1514.
  • Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer. 2007;48:5398–5407.
  • Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5:1671–1677.
  • Borůvka M, Běhálek L. Crystallization and thermal degradation of green nanocomposites based on lignin coated cellulose nanocrystals and poly (lactic acid). Key Eng Mater. 2017;737:256–261.
  • Watkins D, Nuruddin M, Hosur M, et al. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4:26–32.
  • Arias A, Heuzey M-C, Huneault MA, et al. Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose. 2015;22:483–498.
  • Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater Today. 2013;16:220–227.
  • Song Z, Xiao H, Zhao Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym. 2014;111:442–448.
  • Dufresne A. Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Process. 2012;27:557–564.
  • Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43:1519–1542.
  • Spinella S, Re GL, Liu B, et al. Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer. 2015;65:9–17.
  • Feng X, Yang Z, Chmely S, et al. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithoraphy printing: mechanical reinforcement and thermal stabilization. Carbohydr Polym. 2017;169:272–281.
  • Tsuji H, Ikada Y. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 1995;36:2709–2716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.