Publication Cover
Materials Technology
Advanced Performance Materials
Volume 34, 2019 - Issue 9
163
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Implementation of Taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 549-557 | Received 20 Nov 2018, Accepted 03 Mar 2019, Published online: 25 Mar 2019

References

  • Arjunan TV, Senthil TS. Review: dye sensitised solar cells. Mater Technol. 2013;28(1–2):9–14.
  • Guillén E, Casanueva F, Anta JA, et al. Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J Photochem Photobiol A. 2008;200(2):364–370.
  • Vittal R, Ho K-C. Zinc oxide based dye-sensitized solar cells: a review. Renew Sust Energ Rev. 2017;70:920–935.
  • Lizama-Tzec FI, Garcia-Rodriguez R, Rodriguez-Gattorno G, et al. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Adv. 2016;6(44):37424–37433.
  • Hossain MI, Alharbi FH. Recent advances in alternative material photovoltaics. Mater Technol. 2013;28(1–2):88–97.
  • Mor GK, Shankar K, Paulose M, et al. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006;6(2):215–218.
  • Zhang Q, Dandeneau CS, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells. Adv Mater. 2009;21(41):4087–4108.
  • Nguyen T-V, Lee H-C, Yang OB. The effect of pre-thermal treatment of TiO2 nano-particles on the performances of dye-sensitized solar cells. Sol Energy Mater Sol Cells. 2006;90:967–981.
  • Guo M, Yao Y, Zhao F, et al. An In 2.77 S 4 @conductive carbon composite with superior electrocatalytic activity for dye-sensitized solar cells. J Photochem Photobiol A. 2017;332:87–91.
  • Ghann W, Kang H, Sheikh T, et al. Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep. 2017;7:41470.
  • Fan K, Liu M, Peng T, et al. Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells. Renewable Energy. 2010;35(2):555–561.
  • Nguyen T-V, Lee H-C, Alam Khan M, et al. Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell. Solar Energy. 2007;81(4):529–534.
  • Birkel A, Lee Y-G, Koll D, et al. Highly efficient and stable dye-sensitized solar cells based on SnO 2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci. 2012;5(1):5392–5400.
  • Rai R, Senguttuvan TD, Lakshmikumar ST. Study of the electronic and optical bonding properties of doped SnO2. Comput Mater Sci. 2006;37(1–2):15–19.
  • Wali Q, Bakr ZH, Manshor NA, et al. SnO2–tiO2 hybrid nanofibers for efficient dye-sensitized solar cells. Solar Energy. 2016;132:395–404.
  • Goldberg HD, Brown RB, Liu DP, et al. Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays. Sens Actuators B Chem. 1994;21(3):171–183.
  • Oku T, Takeda A, Nagata A, et al. Microstructures and photovoltaic properties of C 60 based solar cells with copper oxides, CuInS 2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. Mater Technol. 2013;28(1–2):21–39.
  • Kim JH, Kim KW, Ryu KS, et al. Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties. Mater Technol. 2012;27(1):18–20.
  • Pech-Rodríguez WJ, González-Quijano D, Vargas-Gutiérrez G, et al. Electrophoretic deposition of polypyrrole/Vulcan XC-72 corrosion protection coatings on SS-304 bipolar plates by asymmetric alternating current for PEM fuel cells. Int J Hydrogen Energy. 2014;39(29):16740–16749.
  • Chávez-Valdez A, Herrmann M, Boccaccini AR. Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J Colloid Interface Sci. 2012;375(1):102–105.
  • Chávez-Valdez A, Boccaccini AR. Innovations in electrophoretic deposition: alternating current and pulsed direct current methods. Electrochim Acta. 2012;65:70–89.
  • Boccaccini AR, Zhitomirsky I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci. 2002;6(3):251–260.
  • Wang JQ, Kuwabara M. Electrophoretic deposition of BaTiO3 films on a Si substrate coated with conducting polyaniline layers. J Eur Ceram Soc. 2008;28(1):101–108.
  • Enrique Rocha-Rangel, Juan. Lopez-Hernández, José A. Rodríguez-García, et al. Dielectric properties of strontium titanate synthesized by means of solid state reactions activated mechanically. Ceram Process Res. 2017;18(8):590–593.
  • Pech-Rodríguez WJ, Rocha-Rangel E, Calles-Arriaga CA, et al.. Study of the electrophoretic deposition copper–carbon nanotubes composite coatings in deep eutectic solvent using a Taguchi experimental design approach. Adv Appl Ceram. 2018;117(8):461–467.
  • Boccaccini AR, Cho J, Subhani T, et al. Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J Eur Ceram Soc. 2010;30(5):1115–1129.
  • Thomas BJC, Boccaccini AR, Shaffer MSP. Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD). J Am Ceram Soc. 2005;88(4):980–982.
  • Cabanas-Polo S, Boccaccini AR. Electrophoretic deposition of nanoscale TiO2: technology and applications. J Eur Ceram Soc. 2016;36(2):265–283.
  • Dor S, Rühle S, Ofir A, et al. The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids Surf A Physicochem Eng Asp. 2009;342(1–3):70–75.
  • Shikoh AS, Ahmad Z, Touati F, et al. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram Int. 2017;43(13):10540–10545.
  • Su B-J, Wang K-W, Tseng C-J, et al.. Synthesis and catalytic property of PtSn/C toward the ethanol oxidation reaction. Int J Electrochem Sci. 2012;7:5246–5255.
  • Jiang L, Sun G, Sun S, et al. Structure and chemical composition of supported Pt–sn electrocatalysts for ethanol oxidation. Electrochim Acta. 2005;50(27):5384–5389.
  • Du C, Heldbrant D, Pan N. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Mater Lett. 2002;57(2):434–438.
  • Cho J, Schaab S, Roether J, et al. Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J Nanopart Res. 2008;10(1):99–105.
  • de Beer E, Duval J, Meulenkamp EA. Electrophoretic deposition: a quantitative model for particle deposition and binder formation from alcohol-based suspensions. J Colloid Interface Sci. 2000;222(1):117–124.
  • Meng X, Kwon T-Y, Yang Y, et al. Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. J Biomed Mater Res B. 2006;78B(2):373–377.
  • Zhou F-L, Parker GJM, Eichhorn SJ, et al. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Mater Charact. 2015;109:25–35.
  • Khandanjou S, Ghoranneviss M, Saviz S. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour. Results Phys. 2017;7:1440–1445.
  • Wu K, Imin P, Adronov A, et al. Electrophoretic deposition of poly[3-(3-N,N-diethylaminopropoxy)thiophene] and composite films. Mater Chem Phys. 2011;125(1–2):210–218.
  • Tahmasbi Rad A, Solati-Hashjin M, Osman NAA, et al. Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram Int. 2014;40(8, Part B):12681–12691.
  • Riahifar R, Raissi B, Marzbanrad E, et al.. Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field. J Mater Sci. 2011;22(1):40–46.
  • Basu RN, Randall CA, Mayo MJ. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J Am Ceram Soc. 2001;84(1):33–40.
  • Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1–61.
  • Mishra A, Kumar A, Hodges D, et al. Tunable TiO 2 –pepsin thin film as a low-temperature electron transport layer for photoelectrochemical cells. Mater Technol. 2017;32(13):829–837.
  • Justin Thomas KR, Baheti A. Fluorene based organic dyes for dye sensitised solar cells: structure–property relationships. Mater Technol. 2013;28(1–2):71–87.
  • Abdalla JT, Huang YW, Yu QJ, et al. TiCl 4 surface-treated SnO 2 photoanodes for self-powered UV photodetectors and dye-sensitized solar cells. Mater Technol. 2017;32(7):443–450.
  • Rosa JL, Robin A, Silva MB, et al. Electrodeposition of copper on titanium wires: taguchi experimental design approach. J Mater Process Technol. 2009;209(3):1181–1188.
  • Ni M, Leung MKH, Leung DYC, et al. An analytical study of the porosity effect on dye-sensitized solar cell performance. Sol Energy Mater Sol Cells. 2006;90(9):1331–1344.
  • Alvar MS, Javadi M, Abdi Y, et al. Enhancing the electron lifetime and diffusion coefficient in dye-sensitised solar cells by patterning the layer of TiO 2 nanoparticles. J Appl Phys. 2016;119(11):114302.
  • Guli M, Hu Z, Yao J, et al. Preparation and characterisation of TiO 2 nanorod and nanotube films as photoanodes for dye-sensitised solar cells. Mater Technol. 2017;32(4):239–244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.