Publication Cover
Materials Technology
Advanced Performance Materials
Volume 34, 2019 - Issue 9
153
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Fe3O4-decorated MWCNTs as an efficient and sustainable heterogeneous nanocatalyst for the synthesis of polyfunctionalised pyridines in water

ORCID Icon, &
Pages 558-569 | Received 26 Oct 2018, Accepted 03 Mar 2019, Published online: 05 Apr 2019

References

  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci. 2011;36:914–944.
  • Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Top Appl Phys. 2001;80:391–425.
  • Martinez-Hernandez AL, Velasco-Santos C, Castano VM. Carbon nanotubes composites: processing, grafting andmechanical and thermal properties. Curr Nanosci. 2010;6:12–39.
  • Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-The route toward applications. Science. 2002;297:787–792.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14:93–100.
  • Misra RDK, Depan D, Shah JS. Structure–process–functional property relationship of nanostructured carbonmediated cellular response for soft-tissue reconstruction and replacement. Acta Biomater. 2012;8:1908–1917.
  • Park KW, Sung YE, Han S, et al. of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J Phys Chem B. 2004;108:939–944.
  • Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A. 2003;253:337–358.
  • Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbonnanotubes. Macromolecules. 2006;39:5194–5205.
  • Misra RDK, Jia Z, Huang HZ, et al. Tunable nanometer-scale architecture of organic–inorganic hybrid nanostructured materials for structural and functional applications. Macromol Chem Phys. 2012;213:315–323.
  • Kramberger C, Pichler T. Electronic and optical properties of carbon nanotubes Nanomater. 2012;5:131–188. doi:10.1201/b11990
  • Biswas C, Lee YH. Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater. 2011;21:3806–3826.
  • Xu LQ, Zhang WQ, Ding YW, et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes. J Phys Chem B. 2004;108:10859–10862.
  • Liu Q, Chen Z, Liu B, et al. Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon. 2008;46:1892–1902.
  • Li YW, Yin ZL, Yao JH, et al. Electrochemical performance of nickel hydroxide doped with multi-wall carbon nanotubes. Trans Nonferrous Met Soc China. 2010;20:s249–s252.
  • Liu Y, Jiang W, Wang Y, et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid–liquid interface using oleate as surfactant and reactant. J Magn Magn Mater. 2009;321:408–412.
  • Journet C, Maser W, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997;388:756–758.
  • Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273:483–487.
  • Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci. 2001;26:145–249.
  • Manafi S, Nadali H, Irani HR. Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mat Lett. 2008;62:4175–4176.
  • Hsu WK, Hare JP, Terrones M, et al. Condensed-phase nanotubes. Nature. 1995;377:687.
  • Laplaze D, Bernier P, Maser WK, et al. Carbon nanotubes: the solar approach. Carbon. 1998;36:685–688.
  • Loh KS, Heng Y, Musa LA, et al. Use of Fe3O4nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors. 2008;8:5775–5791.
  • Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources. 1997;66:1–14.
  • (a) Roth HJ, Kleemann A. Pharmaceutical Chemistry (Drug Synthesis), Vol. 1. New York: John-Wiley & Sons, Ltd; 1988. p. 88–114: ; (b) Henry GD. De novo synthesis of substituted pyridines. Tetrahedron. 2004;60:6043-6061; (c) Joule JA,Mills K, Heterocyclic Chemistry, Wiley-Blackwell, Oxford, UK, 5th ed, 2010.
  • (a) Zhuravel IO, Kovalenko SM, Ivachtchenko AV et al. Synthesis and antimicrobial activity of 5-hydroxymethyl- 8-methyl-2-(N-arylimino)-pyrano[2,3-c]pyridine-3-(N-aryl)-carboxamides. Bioorg Med Chem Lett. 2005;15:5483–5487; (b) Rupert KC, Henry JR, Dodd JH, et al. Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg Med Chem Lett. 2003;13:347–350; (c) Musonda CC, Whitlock GA, Witty MJ, et al. Synthesis and evaluation of 2-pyridyl pyrimidines with in vitro antiplasmodial and antileishmanial activity. Bioorg Med Chem Lett. 2009;19:401–405.
  • Almirante L, Polo L, Mugnaini A, et al. Derivatives of imidazole. I. Synthesis and reactions of imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J Med Chem. 1965;8:305–312; (b) Langer SZ., Arbilla S, Benavides J, et al. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv Biochem Psychopharmacol. 1990;46:61–72;(c) Mizushige K, Ueda T, Yukiiri K, et al. Olprinone: A phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc Drug Rev. 2002;20:163–174;(d) Forde PM, Rudin CM. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother. 2012;13:1195–1201.
  • (a) Kaes C, Katz A, Hosseini MW. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2‘-bipyridine units. Chem Rev. 2000;100:3553–3590; (b) Yan B-P, Cheung CCC, Kui SCF, et al. Efficient white organic light‐emitting devices based on phosphorescent platinum(II)/pluorescent dual‐emitting layers. Adv Mater. 2007;19:3599–3603;(c) Tang B, Yu F, Li P, et al. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: Imaging in living HepG2 and HL-7702 cells. J Am Chem Soc. 2009;131:3016–3023.
  • Agyemang K, Han L, Liu E, et al. Recent advances in Astragalus membranaceus anti‑diabetic research: pharmacological effects of its phytochemical constituents. Evid Based Complement Alternat Med. 2013; 2013:654643.
  • Zheng Z, Liu D, Song C, et al. Studies on chemical constituents and immunological function activity of hairy root of Astragalus membranaceus. Chin J Biotechnol. 1998;14:93–97.
  • Zhan G, Huang J, Du M, et al. Green synthesis of Au–pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Mater Lett. 2011;65:2989–2991.
  • Ma Y, Huang Y, Cheng Y, et al. Biosynthesized ruthenium nanoparticles supported on carbonnanotubes as efficient catalysts for hydrogenation of benzene tocyclohexane: an eco-friendly and economical bioreduction method. Appl Catal A Gen. 2014;484:154–160.
  • Atchudan R, Perumal S, Edison TNJI, et al. Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method. Phys E Low Dimens Syst Nanostruct. 2015;74:355–362.
  • Chenite A, LePage Y, Sayari A. Direct TEM imaging of tubules in calcined MCM-41type mesoporous materials. Chem Mater. 1995;7:1015–1019.
  • Xu X, Lin S, Li M, et al. Reinforcement of epoxy-based composites by magnetically aligned multi walled carbon nanotube. IOP Conf Ser Mater Sci Eng. 2015;87:012088.
  • Mishra K, Basavegowda N, Lee YR. AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for thesynthesis of α, β- and β, β-dichloroenones. Appl Catal A Gen. 2015;506:180–187.
  • Arvand M, Hassannezhad M. Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng C. 2014;36:160–167.
  • Cun-Ku D, Xin L, Yan Z, et al. Fe3O4nanoparticles decorated multi-walled carbon nanotubes and their sorption properties. Chem Res Chin U. 2009;25:936–940.
  • Konga L, Lub X, Zhang W. Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J Solid State Chem. 2008;181:628–636.
  • Wu H, Gao G, Zhou X, et al. Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. Cryst Eng Comm. 2012;14:499–504.
  • Fujii T, de Groot FMF, Sawatzky GA, et al. In situ XPS analysis of various ironoxide films grown byNO2-assisted molecular-beam epitaxy. Phys Rev B. 1999;59:3195–3202.
  • Pei S, Cheng H. The reduction of graphene oxide. Carbon. 2012;50:3210–3228.
  • Liu C, Xu Y, Wu L, et al. Fabrication of core–multishell MWCNT/Fe3O4/PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. J Mater Chem A. 2015;3:10566–10572.
  • Cheng JP, Zhang XB, Yi GF, et al. The discrepancy of the measured change of d-electron occupancy in VxNi100−x and FexNi100−x alloys using EELS and kβ-to-kα X-ray intensity ratios. J Alloys Compd. 2008;455:5–11.
  • Peng DL, Zhao X, Inoue S, et al. Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes. J Magn Magn Mater. 2005;292:143–149.
  • Khanal HD, Lee YR. Organocatalyzed oxidative N-annulation fordiverse and polyfunctionalized pyridines. Chem Commun. 2015;51:9467–9470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.