Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 7
190
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A new application field for BaFe12O19 used as visible light photocatalyst

&
Pages 395-401 | Received 28 Aug 2019, Accepted 29 Oct 2019, Published online: 12 Nov 2019

References

  • Jiang J, Zhao K, Xiao XY. Synthesis and Facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc. 2012;134:4473–4476.
  • Lim CW, Lee IS. Magnetically recyclable nano-catalyst systems for the organic reactions. Nano Today. 2010;5:412–434.
  • Dutta S. Catalytic materials that improve selectivity of biomass conversions. RSC Adv. 2012;2:12575–12593.
  • Chandrasekaran S, Yao L, Deng LB, et al. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48:4178–4280.
  • Deng L, Chandrasekaran S, Bowen C, et al. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J Mater Chem A. 2018;6:11078–11104.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34:455–462.
  • Liu H, Li DR, Yang XL, et al. Fabrication and characterization of Ag3PO4/TiO2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34:192–203.
  • Liang Y, Wang SH, Guo PF. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32:46–51.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33:288–300.
  • Mishra A, Kumar A, Hodges D, et al. Tunable TiO2–pepsin thin film as a low-temperature electron transport layer for photoelectrochemical cells. Mater Technol. 2017;32:829–837.
  • Liu J, Qiao SZ, Hu QH. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7:425–443.
  • Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application, angew. Chem Int Ed. 2007;46:1222–1244.
  • Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111:3036–3075.
  • Nasir Baig RB, Varma RS. Magnetically retrievable catalysts for organic synthesis. Chem Commun. 2013;49:752–770.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W+4-doped titania coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4:273–283.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania-coated nickel ferrite composite nanoparticles. Mater Sci Eng. 2007;23:97–102.
  • Rana S, Rawat J, Sorensson MM, et al. Antibactericidal function of Nd3+ doped-anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2006;2:421–432.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: tiO2-NiFe2O4 bio-material system. Acta Biomater. 2005;1:691–703.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. A comparative study of antimicrobial and photocatalytic activity of different dopants in titania-encapsulated nanoparticle composites. Mater Sci Technol. 2008;24:589–595.
  • Rawat J, Rana S, Srivastava R, et al. Anti-microbial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng. 2007;27:540–545.
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation, and drug release behavior. Acta Biomater. 2007;3:233–242.
  • Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline ferrites II: the effect of dilution. Mater Sci Technol. 2006;22:845–851.
  • Mohanta O, Singhbabu YN, Giri SK, et al. Degradation of Congo red pollutants using microwave derived SrFe12O19: an efficient magnetic photocatalyst under visible light. J Alloys Compd. 2013;564:78–83.
  • Fu WY, Yang HB, Chang LX. Anatase TiO2 nano- layer coating on strontium ferrite nanoparticles for magnetic photocat- alyst. Colloids Surf A. 2006;289:47–52.
  • Pullar RC. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci. 2012;57:1191–1334.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2-NiFe2O4 system. Mater Sci Eng B. 2005;119:144–151.
  • Chandrasekaran S, Ngo YT, Dang DK, et al. Highly enhanced visible light water splitting of CdS by green to blue upconversion. Dalton Trans. 2017;46:13912–13919.
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J. 2016;290:465–476.
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Advanced nano-structured materials for photocatalytic water splitting. J Electrochem Sci Technol. 2016;7:1–12.
  • Chandrasekaran S, Hur SH, Kim EJ, et al. Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Adv. 2015;5:29159–29166.
  • Chandrasekaran S, Choi WM, Chung JS, et al. 3D crumpled RGO-Co3O4 photocatalysts for UV-induced hydrogen evolution reaction. Mater Lett. 2014;136:118–121.
  • Chandrasekaran S, Hur SH, Choi WM, et al. Gold artichokes for enhanced photocatalysis. Mater Lett. 2015;160:92–95.
  • Chandrasekaran S, Zhang P, Peng F, et al. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J Mater Chem A. 2019;7:6161–6172.
  • Luo JH. Structural and magnetic properties of Nd-doped strontium ferrite nanoparticles. Mater Lett. 2012;80:162–164.
  • Yuan Y, Yi JH, Borzone G. Thermodynamic modeling of the Co-Sm system. Calphad. 2011;35:416–420.
  • Gabay AM, Marinescu M, Liu JF. Deformation-induced texture in nanocrystalline 2:17, 1:5 and 2:7 Sm-Co magnets. J Magn Magn Mater. 2009;321:3318–3323.
  • Sarkar S, Bekyarova E, Haddon RC. Chemistry at the dirac point: diels_alder reactivity of graphene. Acc Chem Res. 2012;45:673–682.
  • Zhang L, Wang WZ, Zhou L. Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl Catal, B. 2009;90:458–462.
  • Yoon TJ, Lee W, Oh YS. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem. 2003;27:227–229.
  • Damodara D, Arundhathia R, Likhar PR. High surface and magnetically recoverable mPANI/pFe3O4 nanocomposites for C-S bond formation in water. Catal Sci Technol. 2013;3:797–802.
  • Okazaki M, Shiga T, Sakata S. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair. J Phys Chem. 1988;6:1402–1404.
  • Sakata T. Photocatalysis of irradiated semiconductor surfaces: its application to water splitting and some organic reactions. J Photochem. 1985;29:205–215.
  • Maruska HP, Ghosh AK. Photocatalytic decomposition of water at semiconductor electrodes. Solar Energy. 1978;20:443–458.
  • Xie TP, Xu LJ, Liu CL. Synthesis and properties of composite magnetic material SrCoxFe12-xO19 (x=0-0.3). Powder Technol. 2012;232:87–92.
  • Cui CX, Xu LJ, Xie TP, et al. Synthesis and photocatalytic activity of magnetic heterostructure ZnFe2O4-SrFe12O19. Mater Technol. 2016;31:454–462.
  • Liu CL, Wang Y, Yang J, et al. Structure and catalytic activity of magnetic composite photocatalyst SrFe12O19/SrTiO3. Mater Technol. 2017;32:96–100.
  • Trofymchuk K, Prodi L, Reisch A, et al. Exploiting fast exciton Diffusion in dye-doped polymer nanoparticles to engineer Efficient photoswitching. J Phys Chem Lett. 2015;6:2259–2264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.