378
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Scalable Li1.5Al0.5Ge1.5(PO4)3 thin membrane prepared by tape-casting for large-scale lithium–air battery application

, , ORCID Icon, , , & show all
Pages 572-579 | Received 10 Oct 2019, Accepted 30 Dec 2019, Published online: 12 Jan 2020

References

  • Li F, Kitaura H, Zhou H. The pursuit of rechargeable solid-state Li-air batteries. Energy Environ Sci. 2013;6(8):2302–2311.
  • Capsoni D, Bini M, Ferrari S, et al. Recent advances in the development of Li-air batteries. J Power Sources. 2012;220:253–263.
  • Geng D, Ding N, Hor TSA, et al. From lithium-oxygen to lithium-air batteries: challenges and opportunities. Adv Energy Mater. 2016;6(9):1502164.
  • Balaish M, Kraytsberg A, Ein-Eli Y. A critical review on lithium-air battery electrolytes. Physical Chemistry Chemical Physics, 2014,16 (7):2801–2822.
  • Li L, Chai S-H, Dai S, et al. Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts. Energy Environ Sci. 2014;7(8):2630–2636.
  • Sun Y. Lithium ion conducting membranes for lithium-air batteries. Nano Energy. 2013;2(5):801–816.
  • Kotobuki M, Kobayashi B, Koishi M, et al. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via coprecipitation using various PO4 sources. Mater Technol. 2014;29(sup4):A93–A7.
  • Kotobuki M, Yan B, Lu L, et al. Study on stabilization of cubic Li7La3Zr2O12 by Ge substitution in various atmospheres. Funct Mater Lett. 2016;9(06):1642005.
  • Yan B, Kotobuki M, Liu J. Ruthenium doped cubic-garnet structured solid electrolyte Li7La3Zr2-xRuxO12. Mater Technol. 2016;31(11):623–627.
  • Yan B, Kang L, Kotobuki M, et al. NASICON-structured solid-state electrolyte Li1.5Al0.5-xGaxGe1.5(PO4)3 prepared by microwave sintering. Mater Technol. 2019;34(6):356–360.
  • Berbano SS, Guo J, Guo H, et al. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J Am Ceram Soc. 2017;100(5):2123–2135.
  • Zheng F, Kotobuki M, Song S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources. 2018;389:198–213.
  • Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc. 2017;100(7):2832–2839.
  • Thokchom JS, Gupta N, Kumar B. Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J Electrochem Soc. 2008;155(12):A915–A920.
  • Zhang M, Takahashi K, Imanishi N, et al. Preparation and electrochemical properties of Li1+xAlxGe2-x(PO4)3 synthesized by a sol-gel method. J Electrochem Soc. 2012;159(7):A1114–A1119.
  • Xu XX, Wen ZY, Wu XW, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with good electrical and electrochemical properties. J Am Ceram Soc. 2007;90(9):2802–2806.
  • Mariappan CR, Yada C, Rosciano F, et al. Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources. 2011;196(15):6456–6464.
  • Zhang M, Huang Z, Cheng J, et al. Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting. J Alloys Compd. 2014;590:147–152.
  • Zhang M, Takahashi K, Uechi I, et al. Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries. J Power Sources. 2013;235:117–121.
  • Incledon ML Modelling binder removal in ceramic compacts. Master thesis, Graduate School-New Brunswick Rutgers, The State University of New Jersey, 2013,
  • Zhu Y, Zhang Y, Lu L. Influence of crystallization temperature on ionic conductivity of lithium aluminium germanium phosphate glass-ceramic. J Power Sources. 2015;290:123–129.
  • Sun Z, Liu L, Lu Y, et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J Eur Ceram Soc. 2019;39(2–3):402–408.
  • Meesala Y, Chen C-Y, Jena A, et al. All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion. J Phys Chem C. 2018;122(26):14383–14389.
  • Feng J, Lu L, Lai M. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J Alloys Compd. 2010;501(2):255–258.
  • Kichambare PD, Howell T, Rodrigues S. Sol-gel-derived lithium superionic conductor Li1.5Al0.5Ge1.5(PO4)3 electrolyte for solid-state lithium-oxygen batteries. Energy Technol. 2014;2(4):391–396.
  • Zhang Q, Ding F, Sun W, et al. Preparation of LAGP/P (VDF-HFP) polymer electrolytes for Li-ion batteries. RSC Adv. 2015;5(80):65395–65401.
  • Zhao Y, Huang Z, Chen S, et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 2016;295:65–71.
  • Kotobuki M, Hanc E, Yan B, et al. Preparation and characterization of Ba-substituted Li1+xAlxGe2-x(PO4)3 (x= 0.5) solid electrolyte. Ceram Int. 2017;43(15):12616–12622.
  • Lee J, Howell T, Rottmayer M, et al. Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries. J Electrochem Soc. 2019;166(2):A416–A422.
  • Piana G, Bella F, Geobaldo F, et al. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free,“one pot” preparation. J Energy Storage. 2019;26:100947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.