Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 1
111
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Functional antimicrobial coatings for application on microbiologically contaminated surfaces

, , , , , , ORCID Icon & show all
Pages 11-25 | Received 26 Oct 2019, Accepted 07 Jan 2020, Published online: 20 Jan 2020

References

  • Gentile A, Ruffino F, Grimaldi MG. Complex-morphology metal-based nanostructures: fabrication, characterization, and applications. Nanomaterials. 2016;6:110–142.
  • Malina D, Sobczak-Kupiec A, Kowalski Z. Nanocząstki srebra - przegląd chemiczny metod syntezy. Czas Tech. 2009;107:183–192.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831–1847.
  • Nune KC, Somani MC, Spencer CT, et al. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. MaterTechnol. 2017;32:22–31.
  • Lok CN, Ho C-M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–924.
  • Pietrzak K, Twaruzek M, Czyzowska A, et al. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol. 2015;62:851–857.
  • Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303–4314.
  • Girase B, Depan D, Shah JS, et al. Silver-clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31:1759–1766.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14:B93–B100.
  • Mary G, Bajpai SK, Chand N. Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci. 2009;113:757–766.
  • Gabbay J, Borkow G, Mishal J, et al. Copper oxide impregnated textiles with potent biocidal activities. J Ind Text. 2006;35:323–335.
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy. J Mater Sci Technol. 2015;31:723–732.
  • Ma Z, Yao M, Liu R, et al. Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy. Mater Technol. 2015;30:B80–B85.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34:525–533.
  • Ren L, Chong J, Loya A, et al. Determination of Cu2+ ions release rate from antimicrobial copper bearing stainless steel by joint analysis using ICP-OES and XPS. Mater Technol. 2015;30:B86–B89.
  • Depan D, Misra RDK. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C. 2014;34:221–228.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4:273–283.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. MaterSci Technol. 2008;24:589–595.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27:540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23:97–102.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2006;2:421–432.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. fabrica. MaterTechnol. 2019;34:455–462.
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag 3 PO 4/TiO 2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34:192–203.
  • Liang Y, Wang SH, Guo PF. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32:46–51.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33:288–300.
  • Yin B. ZnO film photocatalysts. J Nanomater. 2014;7. Article ID 186916.
  • Junaidi, Junaidi K, Triyana, et al. Controlling shapes and sizes of synthesis silver nanowires by polyol method using polyvinyl alcohol and polyvinyl pyrrolidone. Indian J Sci Technol. 2017;10:1–8.
  • Díaz-Cruz C, Alonso Nuñez G, Espinoza-Gómez H, et al. Effect of molecular weight of PEG or PVA as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur Polym J. 2016;83:265–277.
  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. J Biomed Mater Res. 1990;24:721–734.
  • Paramelle D, Sadovoy A, Gorelik S, et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 2014;139:4855–4861.
  • Venkatesham M, Ayodhya D, Madhusudhan A, et al. A novel green synthesis of silver nanoparticles using Gum Karaya: characterization, antimicrobial and catalytic activity studies. J Clust Sci. 2014;25:409–422.
  • Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983.
  • Donnelly R, Shaikh R, Raj Singh T, et al. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3:89–100.
  • Tegge G, Yalpani M. Polysaccharides - synthesis, modifications and structure/property relations (vol. 36 of the series ‘studies in organic chemistry’. Vol. 41. Amsterdam, Oxford, New York, Tokyo: Elsevier Science Publishers; 1989. p. 244.
  • Kaszuba M, Corbett J, Watson FMN, et al. High-concentration zeta potential measurements using light-scattering techniques. Philos Trans R Soc A Math Phys Eng Sci. 2010;368:4439–4451.
  • Suave J, José HJ, Moreira RDFPM. Photocatalytic degradation of polyvinylpyrrolidone in aqueous solution using TiO2/H2O2/UV system. Environ Technol. United Kingdom, 2018;39:1404–1412.
  • Krumova M, López D, Benavente R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer (Guildf). 2000;41:9265–9272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.