Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 3
118
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, structural, dielectric and magnetic properties of Cd2+ based Mn nanosized ferrites

& ORCID Icon
Pages 131-144 | Received 25 Sep 2019, Accepted 20 Feb 2020, Published online: 09 Mar 2020

References

  • Teber A, Cil K, Yilmaz T, et al. Manganese and zinc spinel ferrites blended with multi-walled carbon nanotubes as microwave absorbing materials. Aerospace. 2017;4:2‒18.
  • Sepelák V, Heitjans P, Becker KD. Nanoscale spinel ferrites prepared by mechanochemical route. J Therm Anal Calorim. 2007;90:93–97.
  • Maensiri S, Masingboon C, Boonchom B, et al. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater. 2007;56:797–800.
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater. 2007;3:233–242.
  • Qiaoling L, Wang Y, Chang C. Study of Cu, Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J Alloys Comp. 2010;505:505‒523.
  • Sanpo N, Berndt CC, Wen C, et al. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 2013;9:5830‒5837.
  • Sunkara B, Misra RDK. Enhanced antibactericidal function of W+4-doped titania coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2008;4:273–283.
  • Chun L, Xiaopeng H, Fangyi C, et al. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat Commun. 2015;6:7345.
  • Li F, Wang H, Wang L, et al. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method. J Magn Magn Mater. 2007;309:295‒299.
  • Wang Z, Xie Y, Wang P, et al. Microwave anneal effect on magnetic properties of Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method. J Magn Magn Mater. 2011;323:3121–3125.
  • Sharma RK, Ghose R. Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram Int. 2015;41:14684–14691.
  • Vaidyanathan G, Sendhilnathan S. Characterization of Co1-xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Physica B Condens Matter. 2008;403:2157–2167.
  • Raghavender AT, Biliškov N, Skoko Z. XRD and IR analysis of nanocrystalline Ni-Zn ferrite synthesized by the sol-gel method. Mater Lett. 2011;65:677–680.
  • Dubey HK, Verma C, Rai US, et al. Synthesis characterization and properties of nickel based zinc ferrite nanoparticles. Ind J Chem A. 2019;58:454‒458.
  • Nawale AB, Kanhe NS, Raut SA, et al. Investigation of structural, optical and magnetic properties of thermal plasma synthesized Ni-Co spinel ferrite nanoparticles. Ceram Int. 2017;43:6637–6647.
  • Bahout MM, Bertrand S, Pena O. Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. J Solid State Chem. 2005;178:1080–1086.
  • Misra RDK, Kale A, Srivastava RS, et al. Synthesis of nanocrystalline nickel and zinc ferrites by microemulsion technique. Mater Sci Technol. 2003;19:826–830.
  • Gubbala S, Misra RDK. Magnetic behaviour of nanocrystalline nickel ferrite: part 2 – effect of dilution. Mater Sci Technol. 2006;22:845‒851.
  • Kumar AM, Verma MC, Dube CL, et al. Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J Magn Magn Mater. 2008;320:1195‒2000.
  • Sun YK, Oh IH. Preparation of Ultrafine YBa2Cu3O superconductor powders by the poly(vinyl alcohol)-assisted Sol-Gel method. Ind Eng Chem. 1996;35:4296–4300.
  • Mazen SA, Abd-El R, Sabrah BA. The structure and electrical conductivity of Mn-Cd ferrite. J Mater Sci. 1987;22:4177‒4180.
  • Mehta RV, Desai R, Bhatt P, et al. Synthesis and characterization of certain nanomagnetic particles coated with citrate and dextran molecules. Ind J Pure Appl Phys. 2006;44:537‒542.
  • Bhagwat S, Rao P. Study of dielectric properties of nano-crystalline Mn-Zn Ferrite. J Appl Phys. 2013;3:01–06.
  • Verma A, Goel TC, Mendiratta RG, et al. Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater Sci Eng B. 1999;60:156–162.
  • Devmunde BH, Raut AV, Birajdar SD, et al. Structural, electrical, dielectric, and magnetic properties of Cd2+ substituted nickel ferrite nanoparticles. J Nanoparticles. 2016;8:1‒8.
  • Hashim M, Meena SS, Kotnala RK, et al. Alimuddin, exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5‒xCoxFe2O4 nanocrystalline ferrite. J Magn Magn Mater. 2014;360:21–33.
  • Klung HP, Alexander LB. X-ray diffraction procedures. New York USA: Wiley; 1974.
  • De M, Mukherjee A, Tewari HS. Characterization of cadmium substituted nickel ferrites prepared using auto-combustion technique. Process Appl Ceram. 2015;9:193‒197.
  • Hcini S, Selmi A, Rahmouni H, et al. Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T= Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram Int. 2017;43:2529–2536.
  • Winfrey CG, Eckart DW, Tauber A. Preparation and X-ray diffraction data for some rare earth stannets. J Am Chem Soc. 1960;82:2695–2697.
  • Haralkar SJ, Kadam RH, More SS, et al. Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles. Physica B Condens Matter. 2012;407:4338–4346.
  • Zaki HM, Al-Heniti SH, Elmosalami TA. Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Comp. 2015;633:104‒114.
  • Gron T. Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos Mag B. 1994;70:121‒132.
  • Sharma R, Singhal S. Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys B. 2013;41:483‒490.
  • Zaki HM. Structure, analysis and some magnetic properties for low temperature fired Ni– cu ferrite. Physica B. 2012;402:2025‒2031.
  • Bhukal S, Dhiman M, Bansal S, et al. Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv. 2016;6:1360‒1375.
  • Goldman A. Modern ferrite technology. Springer Science & Business Media, Pittsburgh, USA; 2006.
  • Kumar G, Shah J, Kotnala RK, et al. Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg-Mn nanoferrite matrix. Mater Res Bull. 2015;63:216–225.
  • Lakhani VK, Pathak TK, Vasoya NH, et al. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 2011;13:539‒547.
  • Pathan AT, Mathad SN, Shaikh AM. Infrared spectral studies of nanostructured Co2+ substituted Li–Ni–Zn ferrites. Int J Self-Propag High-Temp Synth. 2014;23:112–117.
  • Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99:1727–1735.
  • Grimes NW, Collett AJ. Infrared absorption spectra of ferrites. Nat Phys Sci. 1971;230: 158‒158.
  • Dawoud HA, Shaat SK. A structural study of CuZn ferrites by infrared spectra. J Al- Aqsa Unv. 2006;10:247–262.
  • Sharma US, Sharma RN, Shah R. Physical and magnetic properties of manganese ferrite nanoparticles. J Eng Res Appl. 2014;4:14–17.
  • Rafique MY, Qing PL, Javed QUA, et al. Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chin Phys B. 2013;22:107101–107107.
  • Toksha BG, Shirsath SE, Patange SM, et al. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid state commun. 2008;147:479–483.
  • Najmoddin N, Beitollahi A, Kavas H, et al. XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram Int. 2014;40:3619‒3625.
  • Kambale RC, Shaikh PA, Bhosale CH, et al. The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an auto combustion route. Smart Mater Struct. 2009;18:115028–115037.
  • Gul IH, Abbasi AZ, Amin F, et al. Structural, magnetic and electrical properties of Co1‒xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater. 2007;311:494–499.
  • Maxwell JC. Electricity and magnetism. Oxford University Press, London; UK 1973.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev. 1951;83:121.
  • El HMA. Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg Ferrites. J Magn Magn Mater. 1996;164:187.
  • Kumar MVS, Shankarmurthy GJ, Melagiriyappa E, et al. Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto‒combustion method. J Mater Sci Mater Electron. 2018;29:12795–12803.
  • Mohammad AM, Ridha SMA, Mubarak TH. Dielectric properties of Cr-substituted cobalt ferrite nanoparticles synthesis by citrate-gel auto combustion method. Int J Appl Eng Res. 2018;13:6026–6035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.