1,713
Views
20
CrossRef citations to date
0
Altmetric
Research Paper

All-ceramic Li batteries based on garnet structured Li7La3Zr2O12

ORCID Icon, , ORCID Icon, &
Pages 656-674 | Received 01 Feb 2020, Accepted 16 Mar 2020, Published online: 22 May 2020

References

  • Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy. 2017;3(1):16–21.
  • Janek J, Zeier WG. A solid future for battery development. Nature Energy. 2016;1(9). DOI:https://doi.org/10.1038/nenergy.2016.141
  • Murugan R, Thangadurai V, Weppner W. Fast Lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl. 2007;46(41):7778–7781.
  • Awaka J, Takashima A, Kataoka K, et al. Crystal structure of fast Lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett. 2011;40(1):60–62.
  • Awaka J, Kijima N, Hayakawa H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182(8):2046–2052.
  • Li Y, Han J-T, Wang C-A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. J Power Sources. 2012;209:278–281.
  • Geiger CA, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem. 2011;50(3):1089–1097.
  • Buschmann H, Dolle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys. 2011;13(43):19378–19392.
  • Bernstein N, Johannes MD, Hoang K. Origin of the structural phase transition in Li7La3Zr2O12. Phys Rev Lett. 2012;109(20):205702.
  • Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 2012;206:28–32.
  • Xu M, Park MS, Lee JM, et al. Mechanisms of Li+ transport in garnet-type cubic Li 3+ x La 3 M 2 O 12 (M= Te, Nb, Zr). Phys Rev B. 2012;85(5):052301.
  • Li Y, Han J-T, Wang C-A, et al. Optimizing Li+ conductivity in a garnet framework. J Mater Chem. 2012;22(30):15357–15361.
  • Kumazaki S, Iriyama Y, Kim K-H, et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem commun. 2011;13(5):509–512.
  • Kim KH, Hirayama T, Fisher CAJ, et al. Characterization of grain-boundary phases in Li7La3Zr2O12 solid electrolytes. Mater Charact. 2014;91:101–106.
  • Buannic L, Orayech B, López Del Amo J-M, et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater. 2017;29(4):1769–1778.
  • Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater. 2017;29(18):7961–7968.
  • Garcia Daza FA, Bonilla MR, Llordes A, et al. Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces. 2019;11(1):753–765.
  • Rettenwander D, Redhammer G, Preishuber-Pflugl F, et al. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes. Chem Mater. 2016;28(7):2384–2392.
  • Bernuy-Lopez C, Manalastas W, Lopez Del Amo JM, et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-Ion conductivity ceramics. Chem Mater. 2014;26(12):3610–3617.
  • Wu JF, Chen EY, Yu Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces. 2017;9(2):1542–1552.
  • Song S, Chen B, Ruan Y, et al. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochim Acta. 2018;270:501–508.
  • Baek S-W, Lee J-M, Kim TY, et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources. 2014;249:197–206.
  • He M, Cui Z, Chen C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries? J Mater Chem A. 2018;6(24):11463–11470.
  • Deviannapoorani C, Dhivya L, Ramakumar S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sources. 2013;240:18–25.
  • Luo Y, Li X, Chen H, et al. Influence of sintering aid on the microstructure and conductivity of the garnet-type W-doped Li 7 La 3 Zr 2 O 12 ceramic electrolyte. J Mater Sci. 2019;30(18):17195–17201.
  • Tsai C-L, Dashjav E, Hammer E-M, et al. High conductivity of mixed phase Al-substituted Li7La3Zr2O12. J Electroceram. 2015;35(1–4):25–32.
  • Dhivya L, Karthik K, Ramakumar S, et al. Facile synthesis of high lithium ion conductive cubic phase lithium garnets for electrochemical energy storage devices. RSC Adv. 2015;5(116):96042–96051.
  • Allen JL, Wolfenstine J, Rangasamy E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources. 2012;206:315–319.
  • Wang Y, Lai W. High ionic conductivity lithium garnet oxides of Li7− ×La3Zr2− ×Ta×O12 compositions. Electrochem Solid State Lett. 2012;15(5):A68.
  • Cao Y, Li Y-Q, Guo -X-X. Chin Phys B. 2013;22(7).
  • Gu W, Ezbiri M, Prasada Rao R, et al. Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid State Ion. 2015;274:100–105.
  • Cao Y, Li Y.-Q, Guo X.-X. Densification and lithium ion conductivity of garnet-type Li7–×La3Zr2–×TaxO12(×− 0.25) solid electrolytes. Chin. Phys. B. 2013;22(7):078201.
  • Huang M, Shoji M, Shen Y, et al. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M = Ta, Nb) solid electrolytes. J Power Sources. 2014;261:206–211.
  • Buschmann H, Berendts S, Mogwitz B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J Power Sources. 2012;206:236–244.
  • Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc. 2017;100(7):2832–2839.
  • Naoki HAMAO, Kunimitsu KATAOKA, KIJIMA N, et al. J Ceram Soc Jpn. 2016;124(6):P6-1-P6-3.
  • Huang X, Lu Y, Guo H, et al. Beyond shape engineering of TiO2 nanoparticles: post-synthesis treatment dependence of surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant {001} or {101} facets. ACS Appl Energy Mater. 2018;1:5355–5365.
  • Hamao N, Kataoka K, Kijima N, Akimoto J. Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li7–xLa3Zr2–×TaxO12 (0 ≤ × ≤ 0.6). J Ceram Soc Jpn. 2016;124(6):P6-1–P6-3.
  • Wolfenstine J, Ratchford J, Rangasamy E, et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater Chem Phys. 2012;134(2–3):571–575.
  • Yi E, Wang W, Kieffer J, et al. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors. J Power Sources. 2017;352:156–164.
  • Wu J-F, Pang WK, Peterson VK, et al. Garnet-type fast Li-Ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces. 2017;9(14):12461–12468.
  • Howard MA, Clemens O, Kendrick E, et al. Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12. Dalton Trans. 2012;41(39):12048–12053.
  • El Shinawi H, Janek J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources. 2013;225:13–19.
  • Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem commun. 2011;13(12):1373–1375.
  • Hitz GT, Wachsman ED, Thangadurai V. Highly Li-Stuffed garnet-type Li7+xLa3Zr2-xYxO12. J Electrochem Soc. 2013;160(8):A1248–A1255.
  • Dhivya L, Janani N, Palanivel B, et al. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets. AIP Adv. 2013;3(8):082115.
  • Zhang Y, Hu D, Deng J, et al. Li+ transport channel size governing Li+ migration in garnet-based all-solid-state lithium batteries. J Alloys Compd. 2018;767:899–904.
  • Rangasamy E, Wolfenstine J, Allen J, et al. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources. 2013;230:261–266.
  • Huang M, Dumon A, Nan C-W. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem commun. 2012;21:62–64.
  • Liu X, Li Y, Yang T, et al. High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12(x=0-0.3) ceramics by sol-gel method. J Am Ceram Soc. 2017;100(4):1527–1533.
  • Hanc E, Zając W, Molenda J. Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets. Solid State Ion. 2014;262:617–621.
  • Ramakumar S, Satyanarayana L, Manorama SV, et al. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys. 2013;15(27):11327–11338.
  • Dumon A, Huang M, Shen Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion. 2013;243:36–41.
  • Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015;7(42):23685–23693.
  • Nemori H, Matsuda Y, Mitsuoka S, et al. Stability of garnet-type solid electrolyte LixLa3A2-yByO12 (A=Nb or Ta, B=Sc or Zr). Solid State Ion. 2015;282:7–12.
  • Ma C, Cheng Y, Yin K, et al. Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 2016;16(11):7030–7036.
  • Zhu Y, Connell Y, Tepavcevic S, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater. 2019;9(12):1903062.
  • Ni JE, Case ED, Sakamoto JS, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci. 2012;47(23):7978–7985.
  • Ishiguro K, Nemori H, Sunahiro S, et al. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc. 2014;161(5):A668–A674.
  • Tsai C-L, Roddatis V, Chandran CV, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces. 2016;8(16):10617–10626.
  • Ishiguro K, Nakata Y, Matsui M, et al. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc. 2013;160(10):A1690–A1693.
  • Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ion. 2014;262:151–154.
  • Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16(34):18294–18300.
  • Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017;223:85–91.
  • Matsuki Y, Noi K, Deguchi M, et al. Lithium dissolution/deposition behavior of Al-doped Li7La3Zr2O12 ceramics with different grain sizes. J Electrochem Soc. 2019;166(3):A5470–A5473.
  • Porz L, Swamy T, Sheldon BW, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003.
  • Lu Y, Huang X, Ruan Y, et al. An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. ?J Mater Chem A. 2018;6(39):18853–18858.
  • Sharafi A, Yu S, Naguib M, et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. ?J Mater Chem A. 2017;5(26):13475–13487.
  • Cheng L, Liu M, Mehta A, et al. Garnet electrolyte surface degradation and recovery. ACS Appl Energy Mater. 2018;1(12):7244–7252.
  • Motoyama M, Tanaka Y, Yamamoto T, et al. The active interface of Ta-doped Li7La3Zr2O12 for Li plating/stripping revealed by acid aqueous etching. ACS Appl Energy Mater. 2019;2(9):6720–6731.
  • Zheng H, Wu S, Tian R, et al., Adv Funct Mater. 2019.
  • Yonemoto F, Nishimura A, Motoyama M, et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J Power Sources. 2017;343:207–215.
  • Shao Y, Wang H, Gong Z, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018;3(6):1212–1218.
  • Inada R, Yasuda S, Hosokawa H, et al. Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode. Batteries. 2018;4(2):26.
  • Zheng H, Wu S, Tian R, Xu Z, Zhu H, Duan H., Liu H. Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High-Rate Lithium Cycling. Adv. Funct. Mater.. 2019;30(6):1909189.
  • Cai M, Lu Y, Su J, et al.. ACS Appl Mater Interfaces. 2019;11(38):35030–35038.
  • Liu K, Li Y, Zhang R, et al. Facile surface modification method to achieve an ultralow interfacial resistance in garnet-based Li metal batteries. ACS Appl Energy Mater. 2019;2(9):6332–6340.
  • Basappa RH, Ito T, Yamada H. Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J Electrochem Soc. 2017;164(4):A666–A671.
  • Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano. 2019;13(12):14549–14556.
  • Sun B, Jin Y, Lang J, et al. A painted layer for high-rate and high-capacity solid-state lithium–metal batteries. Chem Commun (Camb). 2019;55(47):6704–6707.
  • Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572–579.
  • Luo W, Gong Y, Zhu Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138(37):12258–12262.
  • Wang C, Xie H, Zhang L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater. 2018;8(6):1701963.
  • Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017;17(1):565–571.
  • Zhou C, Samson AJ, Hofstetter K, et al. A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustainable Energy Fuels. 2018;2(10):2165–2170.
  • Fu KK, Gong Y, Liu B, et al. Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv. 2017;3(4):e1601659.
  • Fu KK, Gong Y, Fu Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries. Angew Chem Int Ed Engl. 2017;56(47):14942–14947.
  • Luo W, Gong Y, Zhu Y, et al. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29(22). DOI:https://doi.org/10.1002/adma.201700681
  • Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci U S A. 2018;115(15):3770–3775.
  • Liu B, Zhang L, Xu S, et al. 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Mater. 2018;14:376–382.
  • Taylor NJ, Stangeland-Molo S, Haslam CG, et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources. 2018;396:314–318.
  • Krauskopf T, Hartmann H, Zeier WG, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11(15):14463–14477.
  • Wakasugi J, Munakata H, Kanamura K. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte. Electrochemistry. 2017;85(2):77–81.
  • Miara L, Windmuller A, Tsai CL, et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl Mater Interfaces. 2016;8(40):26842–26850.
  • Ren Y, Liu T, Shen Y, et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J Materiom. 2016;2(3):256–264.
  • Park K, Yu B-C, Jung J-W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater. 2016;28(21):8051–8059.
  • Kim KH, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources. 2011;196(2):764–767.
  • Dornseiffer J, Uhlenbruck S, Lobe S, et al. Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. J Electroceram. 2017;38(2–4):197–206.
  • Tsai C-L, Ma Q, Dellen C, et al. A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustainable Energy Fuels. 2019;3(1):280–291.
  • Kato T, Hamanaka T, Yamamoto K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources. 2014;260:292–298.
  • Ohta S, Kobayashi T, Seki J, et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources. 2012;202:332–335.
  • Ren Y, Liu T, Shen Y, et al. Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. Ionics. 2017;23(9):2521–2527.
  • Kotobuki M, Munakata H, Yoshida T. Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] solid electrolyte to all-solid-state battery using Li metal anode. J Electrochem Soc. 2010;157(10):A1076–A1079.
  • Han F, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery. Joule. 2018;2(3):497–508.
  • Ohta S, Seki J, Yagi Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources. 2014;265:40–44.
  • Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources. 2013;238:53–56.
  • Feng L, Li L, Zhang Y, et al. Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries. Solid State Ion. 2017;310:129–133.
  • Liu T, Zhang Y, Zhang X, et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. ?J Mater Chem A. 2018;6(11):4649–4657.
  • Liu T, Zhang Y, Chen R, et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem commun. 2017;79:1–4.
  • Liu T, Ren Y, Shen Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 electrolyte: interfacial resistance. J Power Sources. 2016;324:349–357.
  • Inada R, Yasuda S, Tojo M, et al. Development of lithium-stuffed garnet-type oxide solid electrolytes with high ionic conductivity for application to all-solid-state batteries. Front Energy Res. 2016;4. DOI:https://doi.org/10.3389/fenrg.2016.00028
  • Rettenwander D, Geiger CA, Amthauer G. Synthesis and crystal chemistry of the fast Li-Ion conductor Li7La3Zr2O12 doped with Fe. Inorg Chem. 2013;52(14):8005–8009.
  • Jin Y, McGinn PJ. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources. 2011;196(20):8683–8687.
  • Kotobuki M, Kanamura K, Sato Y, et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J Power Sources. 2011;196(18):7750–7754.
  • Kato T, Iwasaki S, Ishii Y, et al. Preparation of thick-film electrode-solid electrolyte composites on Li7La3Zr2O12 and their electrochemical properties. J Power Sources. 2016;303:65–72.
  • Liu B, Fu K, Gong Y, et al. Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries. Nano Lett. 2017;17(8):4917–4923.
  • Jin Y, McGinn PJ. Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode. Electrochim Acta. 2013;89:407–412.
  • Wang C, Zhang L, Xie H, et al. Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries. Nano Energy. 2018;50:393–400.
  • Koo M, Park KI, Lee SH, et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012;12(9):4810–4816.