191
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

A superhigh-temperature hydrothermal treatment to construct CoFe2O4@C/graphene composite for enhanced lithium storage

, &
Pages 682-689 | Received 27 Dec 2019, Accepted 28 Apr 2020, Published online: 07 May 2020

References

  • Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater. 2012;11:512–517.
  • Fan XY, Han J, Jiang Y, et al. Hierarchical porous Sb films on 3D Cu substrate have promise for stable sodium storage. ACS Appl Energy Mater. 2018;1:3598–3602.
  • Fan XY, Han J, Ding YL, et al. 3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage. Adv Energy Mater. 2019;9:1900673.
  • Zhao Y, Liu T, Xia H, et al. Branch-structured Bi2S3–CNT hybrids with improved lithium storage capability. J Mater Chem A. 2014;2:13854–13858.
  • Fan X, Ni K, Han J, et al. Cathodic electrodeposition of porous MnO2 film as binder-free cathode for high performance rechargeable Zinc-ion battery. Funct Mater Lett. 2019;12:1950073.
  • Xiao W, Liang X, Weng W, et al. Nickel based oxides film formed in molten salts for efficient electrocatalytic oxygen evolution. J Mater Chem A. 2019;7:10514–10522.
  • Ni J, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater. 2016;6:1600278.
  • Ni J, Bi X, Jiang Y, et al. Bismuth chalcogenide compounds Bi2X3 (X=O, S, Se): applications in electrochemical energy storage. Nano Energy. 2017;34:356–366.
  • Ma N, Wu P, Wu Y, et al. Progress and perspective of aqueous zinc-ion battery. Funct Mater Lett. 2019;12:1930003.
  • Xia H, Zhu X, Liu J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat Commun. 2018;9:5100.
  • Xiong W, Xia Q, Xia H. Three-dimensional self-supported metal oxides as cathodes for microbatteries. Funct Mater Lett. 2014;07:1430003.
  • Park MG, Lee DH, Jung H, et al. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility. ACS Nano. 2018;12:2955–2967.
  • Zhong Y, Li B, Li S, et al. Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nanomicro Lett. 2018;10:56.
  • Ni J, Zhao Y, Liu T, et al. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv Energy Mater. 2014;4. doi:https://doi.org/10.1002/aenm.201400798
  • Liang H, Liu X, Gao D, et al. Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Res. 2017;10:3690–3697.
  • Fan H, Wang Y, Yu M, et al. Cu–Al–Si alloy anode material with enhanced electrochemical properties for lithium ion batteries. Funct Mater Lett. 2019;12:1950054.
  • Xia Q, Sun S, Xu J, et al. Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics. Small. 2018;14:1804149.
  • Fan XY, Cui Y, Liu P, et al. Electrochemical construction of three-dimensional porous Mn3O4 nanosheet arrays as an anode for the lithium ion battery. Phys Chem Chem Phys. 2016;18:22224–22234.
  • Liu J, Ni J, Zhao Y, et al. Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. J Mater Chem A. 2013;1:12879.
  • Ni J, Wang G, Yang J, et al. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J Power Sources. 2014;247:90–94.
  • Wang G, Ni J, Wang H, et al. High-performance CNT-wired MoO3 nanobelts for Li-storage application. J Mater Chem A. 2013;1:4112.
  • Zhang L, Ni J, Wang W, et al. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability. J Power Sources. 2015;298:138–143.
  • Fan X, Ni K, Yang H, et al. Hierarchical porous CoOX/carbon nanocomposite for enhanced lithium storage. J Electroanal Chem. 2019;847:113202.
  • Fan X, Shi Y, Gou L, et al. Electrodeposition of three-dimensional macro-/mesoporous Co3O4 nanosheet arrays as for ultrahigh rate lithium-ion battery. Electrochim Acta. 2014;142:268–275.
  • Duan C, Zhu F, Du M, et al. Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries. J Electroanal Chem. 2019;835:22–29.
  • Li S, Wang B, Liu J, et al. In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries. Electrochim Acta. 2014;129:33–39.
  • Xia H, Zhu D, Fu Y, et al. CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta. 2012;83:166–174.
  • Liu X, Wu N, Cui C, et al. Enhanced rate capability and cycling stability of core/shell structured CoFe2O4/onion-like C nanocapsules for lithium-ion battery anodes. J Alloys Compd. 2015;644:59–65.
  • Mao J, Hou X, Wang X, et al. The cubic aggregated CoFe2O4 nanoparticle anode material for lithium ion battery with good performance. Mater Lett. 2015;161:652–655.
  • Zhang X, Li D, Zhu G, et al. Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J Colloid Interface Sci. 2017;499:145–150.
  • Hwangbo Y, Yoo J-H, Lee Y-I. Electrospun CoFe2O4 nanofibers as high capacity anode materials for Li-ion batteries. J Nanosci Nanotechnol. 2017;17:7632–7635.
  • Wang HG, Liu D, Li Y, et al. Single-spinneret electrospinning fabrication of CoFe2O4 nanotubes as high-performance anode materials for lithium-ion batteries. Mater Lett. 2016;172:64–67.
  • Zhao S, Guo J, Jiang F, et al. Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries. Mater Res Bull. 2016;79:22–28.
  • Li ZH, Zhao TP, Zhan XY, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim Acta. 2010;55:4594–4598.
  • Sun X, Zhu X, Yang X, et al. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries. Green Energy Environ. 2017;2:160–167.
  • Wang L, Zhuo L, Zhang C, et al. Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries. J Power Sources. 2015;275:650–659.
  • Ren S, Zhao X, Chen R, et al. Carbon-nanofibers encapsulated metal oxide nanocomposite and its application as conversion anode material for lithium ion batteries. ECS Trans. 2015;64:155–164.
  • Fan Z, Zhang L, Wei T, et al. Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy. 2018;48:238–247.
  • Luo H, Yang Z, Huang Y, et al. Nanocubic CoFe2O4/graphene composite for superior lithium-ion battery anodes. Synth Met. 2018;242:92–98.
  • Yang H, Zhang K, Wang Y, et al. CoFe2O4 derived-from bi-metal organic frameworks wrapped with graphene nanosheets as advanced anode for high-performance lithium ion batteries. J Phys Chem Solids. 2018;115:317–321.
  • Sun Y, Zou Y, Yuan F, et al. Controllable synthesis of a peapod-like nanostructure via nanoconfining CoFe2O4 in CMK-5 for high-performance lithium-ion batteries. Appl Surf Sci. 2019;467:640–647.
  • Wang Y, Su D, Ung A, et al. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology. 2012;23:055402.
  • Karunakaran G, Kundu M, Maduraiveeran G, et al. Hollow mesoporous heterostructures negative electrode comprised of CoFe2O4@Fe3O4 for next generation lithium ion batteries. Microporous Mesoporous Mater. 2018;272:1–7.
  • Dou Q, Li Y, Ming NG KA. CoO/CoFe2O4 core/shell nanoparticles assembled in carbon sheets as anode materials for lithium ion battery. J Alloys Compd. 2019;808:151691.
  • Wang C, Su H, Ma Y, et al. Coordination polymers-derived three-dimensional hierarchical CoFe2O4 hollow spheres as high-performance lithium ion storage. ACS Appl Mater Interfaces. 2018;10:28679–28685.
  • Lou S, Cheng X, Zhao Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy. 2017;34:15–25.
  • Wang J, Polleux J, Lim J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111:14925–14931.
  • Ni J, Fu S, Wu C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater. 2016;6:1502568.
  • Zhang N, Dong Y, Jia M, et al. Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018;3:1366–1372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.