Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 10
340
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Investigation into Physical, Microstructural and Mechanical Behaviour of Titanium dioxide Nanoparticulate Reinforced Magnesium Composite

ORCID Icon, &
Pages 575-584 | Received 28 Dec 2019, Accepted 28 May 2020, Published online: 22 Jun 2020

References

  • Meenashisundaram GK, Nai MH, Almajid A, et al. Effects of TiO2powder morphology on the mechanical response of pure magnesium: 1D nanofibers versus 0D nanoparticulates. J Alloys Compd. 2016;664:45–58.
  • Meenashisundaram GK, Gupta M. Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications. Mater Sci Eng A. 2015;627:306–315.
  • Kumar K, Gill RS, Batra U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater Technol. 2017;7857:1–20.
  • Van Phuong N, Gupta M, Moon S. Adhesion and corrosion studies of electrophoretic paint on AZ31 Mg alloy pretreated in cerium solution with and without addition of ethanol. Prog Org Coat. 2017;102:44–150.
  • Meenashisundaram GK, Nai MH, Almajid A, et al. Development of high performance Mg-TiO2 nanocomposites targeting for biomedical/structural applications. Mater Des. 2015;65:04–114.
  • Meenashisundaram G, Nai M, Gupta M. Effects of primary processing techniques and significance of hall-petch strengthening on the mechanical response of magnesium matrix composites containing TiO2 nanoparticulates. Nanomaterials. 2015;5:1256–1283.
  • Ong THD, Yu N, Meenashisundaram GK, et al. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater Sci Eng C. 2017;78: 647–652.
  • Paramsothy M, Gupta M. Critically designing today’s melt processed bulk magnesium alloys using boron rich nanoparticles. Mater Des. 2015;66:557–565.
  • Mallick A, Tun KS, Gupta M. Deformation behaviour of Mg/Y2O3 nanocomposite at elevated temperatures. Mater Sci Eng A. 2012;551:222–230.
  • Sani MA, Ehsani A, Hashemi M. Whey protein isolate/cellulose nanofiber/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol. 2017;251:8–14.
  • Han K, Yu M. Study of the preparation and properties of UV‐blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci. 2006;100:1588–1593.
  • Kaneko M. Photoelectrochemical reaction of biomass and bio-related compounds with nano porous TiO2 film photoanode and O2-reducing cathode. Electrochem commun. 2006;8:336–340.
  • Manivasagam G, Suwas S. Biodegradable Mg and Mg based alloys for biomedical implants. Mater Sci Technol. 2014;30:515–520.
  • Yemmireddy VK, Farrell GD, Hung YC. Development of titanium dioxide (TiO2) nano coatings on food contact surfaces and method to evaluate their durability and photocatalytic bactericidal property. J Food Sci. 2015;80:1903–1911.
  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, et al. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol. 2013;1:33–38.
  • Bonetta S, Motta F, Strini A, et al.,Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express. 2013;3:59.
  • Allahverdiyev AM, Abamor ES, Bagirova M, et al. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011;6:933–940.
  • Trivedi P, Nune KC, Misra RDK, et al. Degradation behaviour of magnesium-rare earth biomedical alloys Degradation behaviour of magnesium-rare earth biomedical alloys. Mater Technol. 2016;31:726–731.
  • Venkatasubbu GD, Baskar R, Anusuya T, et al. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf B Biointerfaces. 2016;148:600–606.
  • Azizi-Lalabadi M, Ehsani A, Divband B, et al. Antimicrobial activity of titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Nat Res. 2019;9:1–10.
  • Zhang X, Wub Y, Xue Y, et al. Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater Lett. 2012;86:42–45.
  • Trivedi P, Misra RDK. Surface biodegradation behavior of rare earth- containing magnesium alloys with different microstructure: the impact on apatite coating formation on the surface. Mater Technol. 2018;33:488–494.
  • Dai J, Zhang X, Wang Z. Microstructure and enhanced corrosion resistance of biodegradable Mg–Gd–Cu–Zr alloy by solution treatment. Mater Technol. 2018;33:301–310.
  • Zhou YL, Li Y, Luo D, et al. Mechanical properties and in vitro corrosion performance of biodegradable Mg-1Mn-2Zn-1Nd alloy Influence of extrusion on the microstructure, mechanical properties and in vitro corrosion performance of biodegradable Mg-1Mn-2Zn- 1Nd alloy. Mater Technol. 2016;31:585–589.
  • Hashemabad ZN, Shabanpour B, Azizi H, et al. Effect of TiO2 nanoparticles on the antibacterial and physical properties of low-density polyethylene film. Polym-Plast Technol Eng. 2017;56:1516–1527.
  • Chen J, Tan L, Yang K. Recent advances on the development of biodegradable magnesium alloys: a review. Mater Technol. 2016;31:681–688.
  • Tan L, Dong J, Chen J, et al. Development of magnesium alloys for biomedical applications: structure, process to property relationship. Mater Technol. 2018;33:235–243.
  • Rawat J, Rana S, Sorensson MM, et al. Antimicrobial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23:97–102.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+ doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2006;2:421–432.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2 NiFe2O4 system. Mater Sci Eng B. 2005;119:144–151.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: tiO2 NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Thakur SK, Srivatsan TS, Gupta M. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina. Mater Sci Eng A. 2007;466:32–37.
  • Das A, Harimkar SP. Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites. J Mater Sci Technol. 2014;30:1059–1070.
  • Elumalai PC, Ganesh R. Synthesis and characterisation of magnesium matrix composite reinforced with titanium dioxide nanoparticulates. Mater Res Express. 2020;7:015093.
  • Meenashisundaram GK, Nai MH, Almajid A, et al. Reinforcing low-volume fraction nano-tin particulates to monolithical, pure MG for enhanced tensile and compressive response. Materials (Basel). 2016;9:1–21.
  • Kumar A, Meenashisundaram GK, Manakari V, et al. Lanthanum effect on improving CTE, damping, hardness and tensile response of Mg-3Al alloy. J Alloys Compd. 2017;695:3612–3620.
  • Kumar Meenashisundaram G, Hou Damien Ong T, Parande G, et al. Using lanthanum to enhance the overall ignition, hardness, tensile and compressive strengths of Mg-0.5Zr alloy. J Rare Earths. 2017;35:723–732.
  • Seetharaman S, Blawert C, Ng BM, et al. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg-Al alloys. J Alloys Compd. 2015;648:759–770.
  • Huang Z, Liu W, Qi W, et al. Effects of Bi on the microstructure and mechanical property of ZK60 alloy. J Magnesium Alloy. 2015;3: 29–35.
  • Xie X, Shen J, Cheng L, et al. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints. Mater Des. 2015;81:31–38.
  • Aravindan S, Rao PV, Ponappa K. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J Alloys Compd. 2015;3:52–62.
  • Nguyen QB, Gupta M. Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J Alloys Compd. 2010;490:382–387.
  • Nai MH, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater Des. 2014;60:490–495.
  • Zheng B, Ertorer O, Li Y, et al. High strength, nano-structured Mg-Al-Zn alloy. Mater Sci Eng A. 2011;528:2180–2191.
  • Meenashisundaram GK, Seetharaman S, Gupta M. Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates. Mater Charact. 2014;94:178–188.
  • Meenashisundaram GK, Gupta M. Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J Alloys Compd. 2014;593:176–183.
  • Alam ME, Han S, Nguyen QB, et al. Development of new magnesium-based alloys and their nanocomposites. J Alloys Compd. 2011;509:8522–8529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.