Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 12
474
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Effect of thickness, bandgap, and carrier concentration on the basic parameters of Cu2O nanostructures photovoltaics: numerical simulation study

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 712-720 | Received 16 Feb 2020, Accepted 30 Jun 2020, Published online: 13 Jul 2020

References

  • Lee YS, Heo J, Siah SC, et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci. 2013;6(7):2112–2118.
  • Abdelfatah M, Ledig J, El-Shaer A, et al. Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials. Sol Energy Mater Sol Cells. 2016;145:454–461.
  • Abdelfatah M, Ismail W, El-Shaer A. Low cost inorganic white light emitting diode based on submicron ZnO rod arrays and electrodeposited Cu2O thin film. Mater Sci Semicond Process. 2018;81:44–47.
  • Abdelfatah M, Ledig J, El-Shaer A, et al. Effect of potentiostatic and galvanostatic electrodeposition modes on the basic parameters of solar cells based on Cu2O thin films. ECS J Solid State Sci Technol. 2016;5(6):Q183–Q187.
  • Abdelfatah M, Ledig J, El-Shaer A, et al. Fabrication and characterization of flexible solar cell from electrodeposited Cu2O thin film on plastic substrate. Solar Energy. 2015;122:1193–1198.
  • Baek SK, Lee KR, Cho HK. Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance. J Nanomater. 2013;2013(2514103):6.
  • El-Shaer A, Tadros M, Khalifa M. N, Fabrication of Homojunction Cuprous Oxide Solar Cell by Electrodeposition Method, at Nat. Sci. 2015;13(5):14–22.
  • Jeong S, Mittiga A, Salza E, et al. Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim Acta. 2008;53(5):2226–2231.
  • Xiong L, Huang S, Yang X, et al. p-type and n-type Cu2O semiconductor thin films: controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochim Acta. 2011;56(6):2735–2739.
  • Hossain MI, Alharbi FH, Tabet N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy. 2015;120:370–380.
  • Chhetri M, Rao C. Photoelectrochemical hydrogen generation employing a Cu2O-based photocathode with improved stability and activity by using NixPyas the cocatalyst. Phys Chem Chem Phys. 2018;20(22):15300–15306.
  • Yin H, Cui Z, Wang L, et al. In situ reduction of the Cu/Cu2O/carbon spheres composite for enzymaticless glucose sensors. Sens Actuators B Chem. 2016;222:1018–1023.
  • Wu L, Zhang L, Xun Z, et al., Effect of Growth Temperature and Time on Morphology and Gas Sensitivity of Cu2O/Cu Microstructures, J Nanomater. 2016;2016:17.
  • Du BD, Phu DV, Quoc LA, et al. Synthesis and Investigation of antimicrobial activity of Cu2O Nanoparticles/Zeolite. J Nanoparticles. 2017;2017:1–6.
  • Wagner A, Stahl M, Ehrhardt N, et al. In Presented at the SPIE OPTO; Oxides for sustainable photovoltaics with earth-abundant materialsEvent: SPIE OPTO, 2014, San Francisco, California, United States .
  • Nishi Y, Miyata T, Minami T. Effect of inserting a thin buffer layer on the efficiency inn-ZnO/p-Cu2O heterojunction solar cells. J Vacuum Sci Technol A. 2012;30(4):04D103.
  • Wagner A, Scherg‐Kurmes H, Waag A, et al., Vapour phase epitaxy of Cu2O on a‐plane Al2O3 ,Phys Status Solidi C. 2013;10(10):1284–1287.
  • Jeong S, Aydil ES. Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. J Crystal Growth. 2009;311(17):4188–4192.
  • Marin AT, Muñoz‐Rojas D, Iza DC, et al., Novel Atmospheric Growth Technique to Improve Both Light Absorption and Charge Collection in ZnO/Cu 2 O Thin Film Solar Cells, Adv Funct Mater. 2013;23(27):3413–3419.
  • Waechtler T, Oswald S, Roth N, et al. Copper oxide films grown by atomic layer deposition from Bis(tri-n-butylphosphane)copper(I)acetylacetonate on Ta, TaN, Ru, and SiO[sub 2]. J Electrochem Soc. 2009;156(6):H453–H459.
  • Oshima T, Nohara M, Hoshina T, et al., Characterization of Cu2O Thin Film Grown by Molecular Beam Epitaxy, in:  Key Engineering Materials, Trans Tech Publ, 2014; pp. 157-160.
  • Kim SY, Ahn CH, Lee JH, et al. p-channel oxide thin film transistors using solution-processed copper oxide. ACS Appl Mater Interfaces. 2013;5(7):2417–2421.
  • McShane CM, Choi K-S. Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys Chem Chem Phys. 2012;14(17):6112–6118.
  • McShane CM, Siripala WP, Choi K-S. Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. J Phys Chem Lett. 2010;1(18):2666–2670.
  • Wei H, Gong H, Chen L, et al. Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C. 2012;116(19):10510–10515.
  • Winkler N, Edinger S, Kaur J, et al. Solution-processed all-oxide solar cell based on electrodeposited Cu2O and ZnMgO by spray pyrolysis. J Mater Sci. 2018;53(17):12231–12243.
  • Yu L, Xiong L, Yu Y. Cu2O homojunction solar cells: F-doped N-type thin film and highly improved efficiency. J Phys Chem C. 2015;119(40):22803–22811.
  • Elfadill NG, Hashim M, Chahrour KM, et al. Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell. Semicond Sci Technol. 2016;31(6):065001.
  • Ouédraogo S, Zougmoré F, Ndjaka J. Numerical analysis of copper-indium-gallium-diselenide-based solar cells by SCAPS-1D. Int J Photoenergy. 2013;2013:1–9.
  • Djinkwi Wanda M, Ouédraogo S, Tchoffo F, et al. Numerical investigations and analysis of Cu2ZnSnS4Based solar cells by SCAPS-1D. Int J Photoenergy. 2016;2016:1–9.
  • Burgelman M, Nollet P, Degrave S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films. 2000;361:527–532.
  • Burgelman M, Verschraegen J, Degrave S, et al. Modeling thin-film PV devices. Prog Photovoltaics Res Appl. 2004;12(2‐3):143–153.
  • Mostefaoui M, Mazari H, Khelifi S, et al. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia. 2015;74:736–744.
  • Wang Y, Xia Z, Liang J, et al. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semicond Sci Technol. 2015;30(5):054004.
  • Takiguchi Y, Miyajima S. Device simulation of cuprous oxide heterojunction solar cells. Jpn J Appl Phys. 2015;54(11):112303.
  • Sawicka-Chudy P, Sibiński M, Wisz G, et al. Numerical analysis and optimization of Cu 2 O/TiO 2 , CuO/TiO 2 , heterojunction solar cells using SCAPS, Journal of Physics Conference Series,2018; 1033(1):012002.
  • Hossain MI, Alharbi FH, El-Mellouhi F, et al. Design optimization of solar cell with molybdenum sulfide as light absorber. J Photonics Energy. 2018;8(2):025501.
  • Zhu L, Shao G, Luo J. Numerical study of metal oxide heterojunction solar cells. Semicond Sci Technol. 2011;26(8):085026.
  • El-Shaer A, Ismail W, Abdelfatah M. Towards low cost fabrication of inorganic white light emitting diode based on electrodeposited Cu2O thin film/TiO2 nanorods heterojunction. Mater Res Bull. 2019;116:111–116.
  • Musselman KP, Marin A, Schmidt‐Mende L, et al. Incompatible length scales in nanostructured Cu2O solar cells. Adv Funct Mater. 2012;22(10):2202–2208.
  • Baloch AA, Aly SP, Hossain MI, et al. Full space device optimization for solar cells. Sci Rep. 2017;7(1):11984.
  • Chen A, Zhu K. Computer simulation of a-Si/c-Si heterojunction solar cell with high conversion efficiency. Solar Energy. 2012;86(1):393–397.
  • Verschraegen J, Burgelman M. Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films. 2007;515(15):6276–6279.
  • Gupta GK, Dixit A. Theoretical studies of single and tandem Cu2ZnSn(S/Se)4 junction solar cells for enhanced efficiency. Opt Mater. 2018;82:11–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.