Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 12
168
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and antibacterial properties of novel Al2O3-Ag anodised composite coating

ORCID Icon, , &
Pages 721-730 | Received 11 Apr 2020, Accepted 30 Jun 2020, Published online: 30 Jul 2020

References

  • Liu J, Sonshine DA, Shervani S, et al. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–6913.
  • Senez V, Thomy V, Dufour R. Nanotechnologies for synthetic super non‐wetting surfaces. John Wiley and Sons; 2014. p. 61–108.h4(https://doi.org/10.1002/9781119015093.c.)
  • Wernick S, Pinner R, Sheasby PG, et al., 2001.
  • González-Castaño M, Cancellieri C, Maeder X, et al. Enhancing the insulating and dielectric properties of barrier anodic Al2O3 on high purity aluminum. Appl Surf Sci. 2020;505:144522.
  • Ono S, Saito M, Asoh H. Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim Acta. 2005;51(5):827–833.
  • Wu H, Ji Y. Nanoporous alumina thin films with interpenetrated structure via alternating voltage anodization. Mater Lett. 2018;233:181–183.
  • Chen S, Kang C, Wang J, et al. Synthesis of anodizing composite films containing superfine Al2O3 and PTFE particles on Al alloys. Appl Surf Sci. 2010;256(22):6518–6525.
  • Schwirn K, Lee W, Hillebrand R, et al. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano. 2008;2(2):302–310.
  • Chung I, Chung CK, Su Y. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid. Surf Coat Technol. 2017;313:299–306.
  • Mahdavi S, Asghari-Alamdari A, Zolola-Meibodi M. Effect of alumina particle size on characteristics, corrosion, and tribological behavior of Co/Al2O3 composite coatings. Ceram Int. 2020;46(4):5351–5359.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and escherichia coli. Appl. Environ. Microbiol. 2008;74(7):2171–2178.
  • Liong M, France B, Bradley KA, et al. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater. 2009;21(17):1684–1689.
  • Ramos-Corella K, Sotelo-Lerma M, Gil-Salido A, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34(8):455–462
  • Liang Y, Wang S, Guo P. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32(1):46–51
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag3PO4/TiO2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.col. Mater Technol. 2019;34(4):192–203.
  • Rawat J, Rana S, Sorensson M, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23(1):97–102.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34(9):525–533.
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu Alloy. J Mater Sci Technol. 2015;31(7):723–732.
  • Hussain S, Hess K, Gearhart J, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro. 2005;19(7):975–983.
  • Mauter MS, Wang Y, Okemgbo KC, et al. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces. 2011;3(8):2861–2868.
  • Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174–185.
  • Jin J, Zhang W, Li H. A composite coating formed on AZ91D magnesium alloy by micro-arc oxidation and electrochemical deposition. Mater Technol. 2017;32(12):707–715.
  • Alkire RC, Gogotsi Y, Simon P. Nanostructured materials in electrochemistry. Wiley-VCH Verlag; 2008.
  • Lee W, Ji R, Gösele U, et al. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater. 2006;5(9):741–747.
  • Lee W, Park S-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev. 2014;114(15):7487–7556.
  • Kashi MA, Ramazani A, Raoufi M, et al. Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method. Thin Solid Films. 2010;518(23):6767–6772.
  • Chime UK, Ezema FI, Marques-Hueso J. Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization. Optik. 2018;174:558–562.
  • Chrzanowski W, Szewczenko J, Tyrlik-Held J, et al. Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. J Mater Process Technol. 2005;162-163:163–168.
  • ShanmugaSigamani P, Srinivasan K, Selvam M. Studies on AC Anodizing of Aluminum in Sulfuric Acid Electrolyte Containing Sodium Sulfate. Int J Inn Res Sci EngTech. 2014;3(6):13869–13875
  • Zhao S, Wu L, Li C, et al. Fabrication and growth model for conical alumina nanopores – evidence against field-assisted dissolution theory. Electrochem commun. 2018;93:25–30.
  • Ma S-J, Luo P, Zhou -H-H, et al. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte. Trans Nonferrous Met Soc China. 2008;18(4):825–830.
  • Campbell FC. Structural composite materials. ASM international; 2010.
  • Lu Z, Zhou HF, Liao JJ, et al. A facile dopamine-assisted method for the preparation of antibacterial surfaces based on Ag/TiO2 nanoparticles. Appl Surf Sci. 2019;481:1270–1276.
  • Girase B, Depan D, Shah J, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14(4):B93–B100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.