Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 10
129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probing influence of nanocarrier structure on red blood cell membrane perturbations

&
Pages 1338-1345 | Received 09 Feb 2021, Accepted 11 Jun 2021, Published online: 24 Jun 2021

References

  • Lu SJ, Park JS, Feng Q, et al. Red blood cells. In: Essentials of stem cell biology. 2009. p. 217–222. Essentials of Stem Cell Biology.  Imprint: Academic Press. https://doi.org/10.1016/C2009-0-00078-6
  • Yazdanbakhsh K, Lomas-Francis C, Reid ME. Blood groups and diseases associated with inherited abnormalities of the red blood cell membrane. Transfus Med Rev. 2000;14:364–374.
  • Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112:3939–3948.
  • Waugh R, Evans EA. Thermoelasticity of red blood cell membrane. Biophys J. 1979;26:115–132.
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–315.
  • Rawat M, Singh D, Saraf S, et al. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29:1790–1798.
  • Kalra J, Bally MB. Liposomes. In: Fundamentals of pharmaceutical nanoscience. Eds  Ijeoma F. UchegbuAndreas G. SchätzleinWoei Ping ChengAikaterini Lalatsa. 2013. p. 29–34. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;2015:286.
  • Chandratre SS, Dash AK. Multifunctional nanoparticles for prostate cancer therapy. AAPS PharmSciTech. 2014;16:98–107.
  • Ekambaram P, Sathali AAH. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011;3:216–220.
  • Yang Z, Chen M, Yang M, et al. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomedicine. 2014;9:327–336.
  • Patil R, Torris A, Bhat S, et al. Mapping fusogenicity of ciprofloxacin-loaded liposomes with bacterial cells. AAPS PharmSciTech. 2019;20:180.
  • Shaker S, Gardouh A, Ghorab M. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12:346–352.
  • Milak S, Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm. 2015;478:569–587.
  • Nair R, Kumar AC, Priya VK, et al. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis. 2012;11:72.
  • Patil S, Choudhary B, Rathore A, et al. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22:1103–1111.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26:64–70.
  • Prabha S, Arya G, Chandra R, et al. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol. 2016;44:83–91.
  • Von Rybinski W, Guckenbiehl B, Tesmann H. Influence of co-surfactants on microemulsions with alkyl polyglycosides. Colloids Surf A Physicochem Eng Asp. 1998;142:333–342.
  • Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5:79–88.
  • Angelova A, Angelov B, Mutafchieva R, et al. Biocompatible mesoporous and soft nanoarchitectures. J Inorg Organomet Polym Mater. 2015;25:214–232.
  • Yaghmur A, Rappolt M, Oøstergaard J, et al. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir. 2012;28(5):2881–2889.
  • Memmolo P, Miccio L, Merola F, et al. 3D morphometry of red blood cells by digital holography. Cytom Part A. 2014;85:1030.
  • Li H, Lykotrafitis G. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys J. 2014;107:642–653.
  • Patil SS, Venugopal E, Bhat S, et al. Exploring microstructural changes in structural analogues of ibuprofen-hosted in situ gelling system and its influence on pharmaceutical performance. AAPS PharmSciTech. 2015;16:1153–1159.
  • Patil SS, Venugopal E, Bhat S, et al. Microstructural elucidation of self-emulsifying system: effect of chemical structure. Pharm Res. 2012;29:2180–2188.
  • Patil SS, Venugopal E, Bhat S, et al. Probing influence of mesophasic transformation on performance of self-emulsifying system: effect of ion. Mol Pharm. 2012;9:318–324.
  • Patil SS, Venugopal E, Bhat S, et al. Mapping ion-induced mesophasic transformation in lyotropic in situ gelling system and its correlation with pharmaceutical performance. Pharm Res. 2013;30:1906–1914.
  • Fernandes HP, Cesar CL, Barjas-Castro MDL. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter. 2011;33:297–301.
  • Sathi A, Viswanad V, Aneesh TP, et al. Pros and cons of phospholipid asymmetry in erythrocytes. J Pharm Bioallied Sci. 2014;6:81–85.
  • Vandoolaeghe P, Rennie AR, Campbell RA, et al. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage. Langmuir. 2009;25:4009–4020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.