Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
3,887
Views
2
CrossRef citations to date
0
Altmetric
Review

Challenges and opportunities in tailoring MAX phases as a starting materials for MXenes development

, &
Pages 1639-1650 | Received 02 Jul 2021, Accepted 08 Aug 2021, Published online: 23 Aug 2021

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2(8):1–15.
  • Paciĺ D, Meyer JC, Girit Ç, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett. 2008;92(13):133107.
  • Yin J, Wu B, Wang Y, et al. Novel Elastic, Lattice Dynamics and Thermodynamic Properties of Metallic Single-Layer Transition Metal Phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P) - IOPscience. J Phys. 2018;30:135701–135709.
  • Colson JW, Dichtel WR. Rationally Synthesized Two-Dimensional Polymers. Nat Chem. 2013;5(6):453–465.
  • Ma R, Sasaki T. Nanosheets of Oxides and Hydroxides: ultimate 2D Charge-Bearing Functional Crystallites. Adv Mater. 2010;22(45):5082–5104.
  • Treacy MMJ, Rice SB, Jacobson AJ, et al. Electron Microscopy Study of Delamination in Dispersions of the Perovskite-Related Layered Phases K[Ca2Nan−3NbnO3n+1]: evidence for Single-Layer Formation. Chem Mater. 1990;2(3):279–286.
  • Molle A, Goldberger J, Houssa M, et al. Buckled Two-Dimensional Xene Sheets. Nat Mater. 2017;16(2):163–169.
  • Anasori B, Lukatskaya MR, Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat Rev Mater. 2017;2(2):1–17.
  • Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253.
  • Barsoum MW. MN+1AXN Phases: a New Class of Solids; Thermodynamically Stable Nanolaminates. Prog Solid State Chem. 2000;28(1–4):201–281.
  • Jeitschko W, Nowotny H. Die Kristallstruktur von Ti3SiC2-Ein Neuer Komplexcarbid-Typ. Monatshefte für Chemie. 1967;98(2):329–337.
  • Nowotny VH. Strukturchemie Einiger Verbindungen Der Übergangsmetalle Mit Den Elementen C, Si, Ge, Sn. Prog Solid State Chem. 1971;5:27–70.
  • Goc K, Prendota W, Chlubny L, et al. Structure, Morphology and Electrical Transport Properties of the Ti3AlC2 Materials. Ceram Int. 2018;44(15):18322–18328.
  • Jeitschko W, Nowotny H, Benesovsky F. Kohlenstoffhaltige Ternäre Verbindungen (H-Phase). Monatshefte für Chemie. 1963;94(4):672–676.
  • Barsoum MW, El-Raghy T. Synthesis and Characterization of a Remarkable Ceramic: ti3SiC2. J Am Ceram Soc. 1996;79(7):1953–1956.
  • Zheng L, Wang J, Lu X, et al. (Ti0.5Nb0.5)5AlC4: a New-Layered Compound Belonging to MAX Phases. J Am Ceram Soc. 2010;93(10):3068–3071.
  • Barsoum MW, El-Raghy T. The MAX Phases: unique New Carbide and Nitride Materials: tertiary Ceramics Are Soft and Machinable, yet Heat-Tolerant, Strong and Lighweight. Am Sci. 2001;89(4):334–343.
  • Barsoum MW, Radovic M. Elastic and Mechanical Properties of the MAX Phases. Annu Rev Mater Res. 2011;41(1):195–227.
  • Barsoum MW. MAX Phases. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany; 2013. ISBN 9783527654581
  • Farle AS, Kwakernaak C, van der Zwaag S, et al. A Conceptual Study into the Potential of Mn+1AXn-Phase Ceramics for Self-Healing of Crack Damage. J Eur Ceram Soc. 2015;35(1):37–45.
  • Barsoum MW, Brodkin D, El-Raghy T. Layered Machinable Ceramics for High Temperature Applications. Scr Mater. 1997;36(5):535–541.
  • Frodelius J, Sonestedt M, Björklund S, et al. Ti2AlC Coatings Deposited by High Velocity Oxy-Fuel Spraying. Surf Coat Technol. 2008;202(24):976–5981.
  • Sonestedt M, Frodelius J, Sundberg M, et al. Oxidation of Ti2AlC Bulk and Spray Deposited Coatings. Corros Sci. 2010;52(12):3955–3961.
  • Walter C, Sigumonrong DP, El-Raghy T, et al. Towards Large Area Deposition of Cr2AlC on Steel. Thin Solid Films. 2006;515(2):389–393.
  • Utili M, Agostini M, Coccoluto G, et al. Ti3SiC2 as a Candidate Material for Lead Cooled Fast Reactor. In Proceedings of the Nuclear Engineering and Design; Holland, 2011 May 1; Vol. 241, pp.1295–1300.
  • Nechiche M, Gauthier-Brunet V, Mauchamp V, et al. Synthesis and Characterization of a New (Ti1-ε,Cuε)3(Al,Cu)C2 MAX Phase Solid Solution. J Eur Ceram Soc. 2017;37(2):459–466.
  • Jeitschko W, Nowotny H, Benesovsky F. Die H-Phasen: ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN Und Nb2GaC. Monatshefte für Chemie. 1964;95(1):178–179.
  • Zhang P, Zhang Y, Sun Z. Spontaneous Growth of Metal Whiskers on Surfaces of Solids: a Review. J Mater Sci Technol. 2015;31(7):675–698.
  • Advances in Science and Technology of Mn+1AXn Phases | ScienceDirect Available online: https://www.sciencedirect.com/book/9781845699918/advances-in-science-and-technology-of-mn-and-1axn-phases accessed on (2020 Jul 20
  • Sun ZM. Progress in Research and Development on MAX Phases: a Family of Layered Ternary Compounds. Int Mater Rev. 2011;56(3):143–166.
  • Zhou A. Methods of MAX-phase synthesis and densification – II. In: Advances in Science and Technology of Mn+1AXn Phases. Elsevier; Woodhead Publishing, 2012. p. 21–46.
  • Eklund P, Rosen J, Persson POA. Layered ternary M n+1 AXn phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys. 2017;50(11):113001–113015.
  • Zhou Y, Sun Z, Chen S, et al. In-Situ Hot Pressing/Solid-Liquid Reaction Synthesis of Dense Titanium Silicon Carbide Bulk Ceramics. Mater Res Innovations. 1998;2(3):142–146.
  • Wang XH, Zhou YC. Microstructure and Properties of Ti3AlC2 Prepared by the Solid-Liquid Reaction Synthesis and Simultaneous in-Situ Hot Pressing Process. Acta Materialia. 2002;50(12):3143–3151.
  • Tzenov NV, Barsoum MW. Synthesis and Characterization of Ti3AlC2. J Am Ceram Soc. 2004;83(4):825–832.
  • Lis J, Chlubny L, Łopaciński M, et al. Ceramic Nanolaminates-Processing and Application. J Eur Ceram Soc. 2008;28(5):1009–1014.
  • Ghosh NC, Harimkar SP. Consolidation and synthesis of MAX phases by Spark Plasma Sintering (SPS): a review. In: Advances in Science and Technology of Mn+1AXn Phases. Materials Science, Elsevier; 2012. p. 47–80.
  • Li J-F, Matsuki T, Watanabe R. Mechanical-Alloying-Assisted Synthesis of Ti3SiC2 Powder. J Am Ceram Soc. 2004;85(4):1004–1006.
  • Li S-B, Zhai H-X. Synthesis and Reaction Mechanism of Ti3SiC2 by Mechanical Alloying of Elemental Ti, Si, and C Powders. J Am Ceram Soc. 2005;88(8):2092–2098.
  • Zhang H, Dai FZ, Xiang H, et al. Phase Pure and Well Crystalline Cr2AlB2: a Key Precursor for Two-Dimensional CrB. J Mater Sci Technol. 2019;35(8):1593–1600.
  • Lis J, Miyamoto Y, Pampuch R, et al. Ti3SiC-Based Materials Prepared by HIP-SHS Techniques. Mater Lett. 1995;22(3–4):163–168.
  • Bai Y, He X, Li Y, et al. Rapid synthesis of bulk Ti2 AlC by self-propagating high temperature combustion synthesis with a pseudo–hot isostatic pressing process. J Mater Res. 2009;24(8):2528–2535.
  • El-Raghy T, Barsoum MW. Processing and Mechanical Properties of Ti3SiC2: i, Reaction Path and Microstructure Evolution. J Am Ceram Soc. 2004;82(10):2849–2854.
  • Mashtalir O, Naguib M, Dyatkin B, et al. Kinetics of Aluminum Extraction from Ti3AlC2 in Hydrofluoric Acid. Mater Chem Phys. 2013;139(1):147–152.
  • Naguib M, Halim J, Lu J, et al. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J Am Chem Soc. 2013;135(43):15966–15969.
  • Zhou A, Wang C, Huang Y. A Possible Mechanism on Synthesis of Ti3AlC2. Mater Sci Eng A. 2003;352(1–2):333–339.
  • Li SB, Zhai HX, Bei GP, et al. Formation of Ti3AlC2 by mechanically induced self-propagating reaction in Ti–Al–C system at room temperature. Mater Sci Technol. 2006;22(6):667–672.
  • Rozmysłowska-Wojciechowska A, Wojciechowski T, Ziemkowska W, et al. Surface Interactions between 2D Ti 3 C 2 /Ti 2 C MXenes and Lysozyme. Appl Surf Sci. 2019;473:409–418.
  • Högberg H, Eklund P, Emmerlich J, et al. Epitaxial Ti2n GeC, Ti 3GeC2, and Ti4 GeC 3MAX-phase thin films grown by magnetron sputtering. J Mater Res. 2005;20(4):779–782.
  • Palmquist JP, Jansson U, Seppänen T, et al. Magnetron Sputtered Epitaxial Single-Phase Ti3SiC2 Thin Films. Appl Phys Lett. 2002;81(5):835–837.
  • Wilhelmsson O, Palmquist JP, Lewin E, et al. Deposition and Characterization of Ternary Thin Films within the Ti-Al-C System by DC Magnetron Sputtering. J Crystal Growth. 2006;291(1):290–300.
  • Fakih H, Jacques S, Berthet MP, et al. The Growth of Ti3SiC2 Coatings onto SiC by Reactive Chemical Vapor Deposition Using H2 and TiCl4. Surf Coat Technol. 2006;201(6):3748–3755.
  • Fakih H, Jacques S, Dezellus O, et al. Phase Equilibria and Reactive Chemical Vapor Deposition (RCVD) of Ti 3SiC 2. J Phase Equilib Diffus. 2008;29(3):239–246.
  • Darwin PS, Zhang J, Zhou Y, et al. Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets. J Phys D Appl Phys. 2009;42(18):185408–185416.
  • Joelsson T, Flink A, Birch J, et al. Deposition of Single-Crystal Ti2 AlN Thin Films by Reactive Magnetron Sputtering from a 2Ti: alCompound Target. J Appl Phys. 2007;102(7):074918.
  • Dolique V, Jaouen M, Cabioc’H T, et al. Formation of (Ti,Al) NTi2AlN Multilayers after Annealing of TiNTiAl (N) Multilayers Deposited by Ion Beam Sputtering. J Appl Phys. 2008;103(8):083527.
  • Cabioch T, Alkazaz M, Beaufort MF, et al. Ti2AlN Thin Films Synthesized by Annealing of (Ti+Al)/AlN Multilayers. Mater Res Bull. 2016;80:58–63.
  • Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory Diborides of Zirconium and Hafnium. J Am Ceram Soc. 2007;90(5):1347–1364.
  • Eklund P, Beckers M, Jansson U, et al. Mn + 1AXn Phases: materials Science and Thin-Film Processing. Thin Solid Films. 2010(518): 1851–1878.
  • Khazaei M, Arai M, Sasaki T, et al. Yoshio Sakka Two-Dimensional Molybdenum Carbides: potential Thermoelectric Materials of the MXene Family. Phys Chem Chem Phys. 2014;16(17):7841–7849.
  • Halim J, Kota S, Lukatskaya MR, et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv Funct Mater. 2016;26(18):3118–3127.
  • Hu C, Lai -C-C, Tao Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide. Chem Comm. 2015;51(30):6560–6563.
  • Zha XH, Zhou J, Eklund P, et al. Non-MAX Phase Precursors for MXenes. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. 2019;53–68. DOI:10.1007/978-3-030-19026-2_4
  • Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012;6(2):1322–1331.
  • Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat Commun. 2013;4(1):1–7.
  • Li Z, Wu Y. 2D Early Transition Metal Carbides (MXenes) for Catalysis. Small. 2019;15(29):1804736.
  • Meshkian R, Näslund LÅ, Halim J, et al. Synthesis of Two-Dimensional Molybdenum Carbide, Mo2C, from the Gallium Based Atomic Laminate Mo2Ga2C. Scr Mater. 2015;108:147–150.
  • Zhou J, Zha X, Chen FY, et al. A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3from Nanolaminated Zr3Al3C5. Angew Chem. 2016;55(16):5008–5013.
  • Halim J, Kota S, Lukatskaya MR, et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv Funct Mater. 2016;26(18):3118–3127.
  • Li Q, Fan S, Han W, et al. Coating of Carbon Nanotube with Nickel by Electroless Plating Method. Japanese Journal of Applied Physics, Part 2: Letters . 1997;36(Part 2, No. 4B):L501.
  • Wozniak JT, Trzaska M, Cieślak G, et al. Preparation and Mechanical Properties of Alumina Composites Reinforced with Nickel-Coated Graphene. Ceram Int. 2016;42(7):8597–8603.
  • Wozniak J, Kurtycz P, Broniszewski K, et al. Properties of Alumina Matrix Composites Reinforced with Nickel-Coated Graphene. In Proceedings of the Materials Today: Proceedings, Aveiro, Portugal; Elsevier Ltd, 2015 Jan 1; Vol. 2, pp. 376–382.
  • Wozniak J, Jastrzębska A, Cygan T, et al. Surface Modification of Graphene Oxide Nanoplatelets and Its Influence on Mechanical Properties of Alumina Matrix Composites. J Eur Ceram Soc. 2017;37(4):1587–1592.
  • Petrus M, Wo J, Cygan T; et al. Materials Influence of Ti 3 C 2 T x MXene and Surface-Modified Ti 3 C 2 T x MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Method. 2021, doi:10.3390/ma14133558.
  • Cygan T, Wozniak J, Petrus M, et al. Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2d Ti3c2 (Mxene) Phase. Materials. 2021;14(4):1–18.
  • Gong K, Zhou K, Qian X, et al. MXene as Emerging Nanofillers for High-Performance Polymer Composites: a Review. Compos Part B Eng. 2021;217:108867.
  • Xiao-Yang S, Fan-Yan C, Qi-Huang D, et al. Preparation and Property of MXene/Copper Alloy Composites. Journal of Inorganic Materials. 2018;33(6):603.
  • Zhou W, Zhou Z, Fan Y, et al. Significant Strengthening Effect in Few-Layered MXene-Reinforced Al Matrix Composites. 2020;9:148–154. http://mc.manuscriptcentral.com/tmrl
  • Zhang J, Li S, Hu S, et al. Chemical Stability of Ti3C2 MXene with Al in the Temperature Range 500–700 °C. Materials. 2018;11. DOI:10.3390/MA11101979.
  • Hu J, Li S, Zhang J, et al. Mechanical Properties and Frictional Resistance of Al Composites Reinforced with Ti3C2Tx MXene. Chinese Chemical Letter. 2020;31(4):996–999.
  • Wozniak J, Petrus M, Cygan T, et al. Silicon Carbide Matrix Composites Reinforced with Two-Dimensional Titanium Carbide – manufacturing and Properties. Ceram Int. 2019;45(6):6624–6631.
  • Wozniak J, Petrus M, Cygan T, et al. Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics. Materials. 2020;13:5221.
  • Petrus M, Woźniak J, Cygan T, et al. Silicon Carbide Nanocomposites Reinforced with Disordered Graphitic Carbon Formed in Situ through Oxidation of Ti3C2 MXene during Sintering. Arch Civil Mech Eng. 2021;21(3):1–12.
  • Naguib M, Come J, Dyatkin B, et al. MXene: a Promising Transition Metal Carbide Anode for Lithium-Ion Batteries. Electrochem commun. 2012;16(1):61–64.
  • Zhu J, Chroneos A, Schwingenschlögl U. Nb-Based MXenes for Li-Ion Battery Applications. Phys Status Solidi (RRL) Rapid Res Lett. 2015;9(12):726–729.
  • Wang D, Li F, Lian R, et al. A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium–Sulfur Batteries. ACS Nano. 2019;13(10):11078–11086.
  • Lee E, VahidMohammadi A, Prorok BC, et al. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl Mater Interfaces. 2017;9(42):37184–37190.
  • Review-Recent Exploration of Two-Dimensional MXenes for Gas Sensing. From a Theoretical to an Experimental View. doi:10.1149/2.0152003JES.
  • Liu H, Duan C, Yang C, et al. A Novel Nitrite Biosensor Based on the Direct Electrochemistry of Hemoglobin Immobilized on MXene-Ti3C2. Sens Actuators B Chem. 2015;218:60–66.
  • Cappello V, Marchetti L, Parlanti P, et al. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports. 2016;6:1–15.
  • Yadav A, Dashora A, Patel N, et al. Study of 2D MXene Cr2C Material for Hydrogen Storage Using Density Functional Theory. Appl Surf Sci. 2016;389:88–95.
  • Hu Q, Wang H, Wu Q, et al. Two-Dimensional Sc2C: a Reversible and High-Capacity Hydrogen Storage Material Predicted by First-Principles Calculations. Int J Hydrogen Energy. 2014;39(20):10606–10612.
  • Hu Q, Sun D, Wu Q, et al. MXene: a New Family of Promising Hydrogen Storage Medium. J Phys Chem A. 2013;117(51):14253–14260.