Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
288
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of AgNPs and Ag@MoS2 nanocomposites by dracocephalum kotschyi aqueous extract and their antiacetylcholinesterase activities

, &
Pages 1691-1702 | Received 08 Apr 2021, Accepted 29 Aug 2021, Published online: 09 Sep 2021

References

  • Yin Z, Chen B, Bosman M, et al. Au Nanoparticle-Modified MoS2 Nanosheet-Based photoelectrochemical cells for water splitting. Small. 2014;10(17):3537–3543.
  • Hassanzadeh J. Khataee A and Eskandari H. Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive etection of cholesterol. Sens Actuators B Chem. 2018;259:402–410.
  • Sreeprasad TS, Nguyen P, Kim N, et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett. 2013;13(9):4434–4441.
  • Wang X, Chu C, Shen L, et al. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens Actuators B Chem. 2015;206:30–36.
  • Joanne M, Kumar D, BJ M, et al. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 2011;44(2):99–105.
  • Nam J, Won N, Jin H, et al. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc. 2009;131(38):13639–13645.
  • Ahamed M. AlSalhi MS and Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–1848.
  • Lin L, Wang W, Huang J, et al. Nature factory of silver nanowires: plant-mediated synthesis using broth of Cassia fistula leaf. Chem Eng J. 2010;162(2):852–858.
  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1–2):83–96.
  • Njagi EC, Huang H, Stafford L, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir. 2011;27(1):264–271.
  • Mohseni MS, Khalilzadeh MA, Mohseni M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatal Agric Biotechnol. 2020;25:101569.
  • Ebrahimzadeh MA, Naghizadeh A, Amiri O, et al. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg Chem. 2020;94:103425.
  • Molina GA, Esparza R, López-Miranda JL, et al. Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf B: Biointerfaces. 2019;180:141–149.
  • Hamelian M, Zangeneh MM, Amisama A, et al. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl Organomet Chem. 2018;32(9):e4458.
  • Chokkalingam M, Singh P, Huo Y, et al. Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. J Drug Deliv Sci Technol. 2019;49:308–315.
  • Zhang X, Chen X, Ren H, et al. Bowl-like C@MoS2 nanocomposites as anode materials for lithium-ion batteries: enhanced stress buffering and charge/mass transfer. ACS Sustain Chem Eng. 2020;8(27):10065–10072.
  • Ren H, Gu C, Zhao J, et al. Co9S8@MoS2 core-shellnanostructure anchored on reduced graphene oxide with improved electrochemical performance for lithium-ion batteries. Appl Surf Sci. 2019; 473: 918–927
  • Zhang P, Lu X, Huang Y, et al. MoS2 nanosheets decorated with gold nanoparticles for rechargeable Li-O2 batteries. J Mater Chem A. 2015; 3: 14562–14566
  • Wang J, Wu Z, Hu K, et al. High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloys Compd. 2015;619:38–43.
  • Vadivelmurugan A, Anbazhagan R, Arunagiri V, et al. Pluronic F127 self-assembled MoS2 nanocomposites as an effective glutathione responsive anticancer drug delivery system. RSC Adv. 2019;9(44):25592–25601.
  • Zhou Y, Liu G, Zhu X, et al. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sens Actuators B Chem. 2017;251:280–290.
  • Jin XF, Liu CRL, Chen L, et al. Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing. Sens Actuators A Phys. 2020;316:112388.
  • Akbarzadeh E, Bahrami F, Mr G. Au and Pt nanoparticles supported on Ni promoted MoS2 as efficient catalysts for p-nitrophenol reduction. J Water Process Eng. 2020;34:101142.
  • Adhikari S. Mandal S and Kim DH. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem Eng J. 2019;373:31–43.
  • Cheng FY. MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives. Adv Mater. 2006;18(19):2561–2564.
  • Zhang W, Zhang P, Su Z, et al. Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale. 2015;7(44):18364–18378.
  • Wang Y, Wang Y, Wu D, et al. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens Actuators B Chem. 2018;255:125–132.
  • Xu M, Zhang K, Liu Y, et al. Multifunctional MoS2 nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy. Colloids Surf B. 2019;184:110551.
  • Yagati AK, Go A, Vu NH, et al. A MoS2-Au nanoparticle-modified immunosensor for T3 biomarker detection in clinical serum samples. Electrochim Acta. 2020;342:136065.
  • Liu L, Wang J, Tan X, et al. Photosensitizer loaded PEG-MoS2–Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy. J Mater Chem B. 2017;5(12):2286–2296.
  • Panchu SJ, Dhani S, Chuturgoon A, et al. Laser assisted synthesis of inorganic fullerene like MoS2-Au nanohybrid and their cytotoxicity against human monocytic (THP-1) cells. J Photochem Photobiol B Biol. 2018;187:10–17.
  • Su S, Xu Y, Sun Q, et al. Noble metal nanostructure-decorated molybdenum disulfide nanocomposites: synthesis and applications. J Mater Chem B. 2018;6(33):5323–5334.
  • Rechinger KH. 1986. Flora Iranica: Labiatae, Akademische Druck-und Verlagsanstalt;Vol. 150, pp. 218–230, Graz
  • Ghahreman A. Flore de iranica en couleur naturelle. Faculty of Science. 1987;University of Tehran: No 432 Code 114, 019, 004.
  • Samadi L, Larijani K, Naghdi Badi H, et al. Qualitative and quantitative variations of the essential oils of Dracocephalum kotschyi Boiss. In: as affected by different drying methods. J Food Process Preserv. 2018. p. e13816.
  • Kamali M, Khosroyar S, Mohammadi A. Antibacterial activity of various extracts from Dracocephalum kotschyi against food pathogenic microorganisms. Int J Pharmtech Res. 2015;8:158–163.
  • Sadraei H. Asghari G and Kasiri F. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and a-terpineol. Res Pharm Sci. 2015;10:109–116.
  • Golshani S, Karamkhani F, Monsef-Esfehani HR, et al. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharm Sci. 2004;7:76–79.
  • Amirghofran Z. Azadbakht M and Karimi MH. Evaluation of the immunomodulatory effects of five herbal plants. J Ethnopharmacol. 2000;72(1–2):167–172.
  • Honda G, Saeidnia S, Gohari AR, et al. Two new monoterpene glycosides and trypanocidal terpenoids from Dracocephalum kotschyi. Chem Pharm Bull. 2004;52(10):1249–1250.
  • Fattahi M, Nazeri V, Torras-Claveria L, et al. Identification and quantification of leaf surface flavonoids in wildgrowing populations of Dracocephalum kotschyi by LC-DAD-ESI-MS. Food Chem. 2013;141(1):139–146.
  • Gohari AR, Saeidnia S, Matsuo K, et al. Flavonoid constituents of Dracocephalum kotschyi growing in Iran and their trypanocidal activity. J Nat Med. 2003;57(6):250–252.
  • Dorosti N, Jamshidi F. Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization, and evaluation of anticancer and antibacterial activity. J Appl Biomed. 2016;14(3):235–245.
  • Gholivand K, Ghaziani F, Yaghoubi R, et al. Design, synthesis and anticholinesterase activity of some new α-aminobisphosphonates. J Enzyme Inhib Med Chem. 2010;25(6):827–835.
  • Singh M, Kaur M, Kukreja H, et al. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem. 2013;70:165–188.
  • Ellman GL, Coutney KD, Andres VR, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):91–95.
  • Li W, Xu H, Zhai T, et al. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes. Sens Actuators B Chem. 2017;253:97–107.
  • Copeland RA. Enzymes: a practical introduction to structure, mechanism, and data analysis. second ed. New York: John Wiley-VCH; 2000.
  • Dwivedi AD, Gopal KG. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp. 2010;369(1–3):27–33.
  • Mock JJ, Barbic M, Smith DR, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–6758.
  • Zhao J, Zhang Z, Yang S, et al. Facile synthesis of MoS2 nanosheet-silver nanoparticles composite for surface enhanced Raman scattering and electrochemical activity. J Alloy Compd. 2013;559:87–91.
  • Lukman AI, Gong B, Marjo CE, et al. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci. 2011;353(2):433–444.
  • Zhou W, Yin Z, Du Y, et al. Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013;9(1):140–147.
  • Ma L, Chen WX, Li H, et al. Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres. Mater Lett. 2008;62(6–7):797–799.
  • Hong L, Li J, Liu F, et al. Morphology-controllable fabrication of Ag@MoS2 composites with improved antioxidant activities at low Ag loading. Colloids Surf A. 2020;596:124722.
  • Xu Q, Liu Y, Cai L, et al. A green electrolysis of silver-decorated MoS2 nanocomposite with an enhanced antibacterial effect and low cytotoxicity. Nanoscale Adv. 2021;3:3460–3469.
  • Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides Environ health persp. Environ Health Perspect. 1990;87:245–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.