Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterisation and antibacterial properties of thermoplastic chitosan/nano ZnO composites

, , , &
Pages 1846-1853 | Received 05 May 2021, Accepted 01 Oct 2021, Published online: 20 Oct 2021

References

  • Al-Naamani L, Dobretsov S, Dutta J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg. 2016;38:231–237.
  • Noshirvani N, Ghanbarzadeh B, Mokarram RR, et al. Preparation and characterization of active emulsified films based on chitosan- carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol. 2017;99:530–538.
  • Yin M, Lin X, Ren T, et al. Cytocompatible quaternized carboxymethyl chitosan/poly (vinyl alcohol) blend film loaded copper for antibacterial application. Int J Biol Macromol. 2018;120:992–998.
  • Gutha Y, Pathak JL, Zhang W, et al. Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017;103:234–241.
  • Youssef AM, Abou-Yousef H, El-Sayed SM, et al. Mechanical and antibacterial properties of novel high-performance chitosan/nanocomposite films. Int J Biol Macromol. 2015;76:25–32.
  • Rahman PM, Mujeeb VA, Muraleedharan K, et al. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem. 2018;11(1):120–127.
  • Lu Z, Gao J, He Q, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460–469.
  • Perelshtein I, Ruderman E, Perkas N, et al. Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B. 2013;1(14):1968–1976.
  • Rahman PM, Muraleedaran K, Mujeeb VA. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol. 2015;77:266–272.
  • Malini M, Thirumavalavan M, Yang WY, et al. A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int J Biol Macromol. 2015;80:121–129.
  • Epure V, Griffon M, Pollet E, et al. Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym. 2011;83(2):947–952.
  • Shafiq M, Yasin T, Rafiq MA. Shaista. structural, thermal, and antibacterial properties of chitosan/ZnO composites. Polym Composite. 2013;35(1):79–85
  • Matet M, Heuzey MC, Pollet E, et al. Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydr Polym. 2013;95(1):241–251.
  • Hernandez-Izquierdo VM, Krochta JM. Thermoplastic processing of proteins for film formation—a review. J Food Sci. 2008;73(2):30–39.
  • Zhang Y, Liu BL, Wang LJ, et al. Preparation, structure and properties of acid aqueous solution plasticized thermoplastic chitosan. Polymers. 2019;11(5):818.
  • Ziani K, Oses J, Coma V, et al. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT-Food Sci Technol. 2008;41(10):2159–2165.
  • Leceta I, Guerrero P, De la Caba K. Functional properties of chitosan-based films. Carbohydr Polym. 2013;93(1):339–346.
  • Wang H, Gong X, Miao Y, et al. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019;283:397–403.
  • Wang C, Lv J, Ren Y, et al. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property. Carbohydr Polym. 2016;138:106–113.
  • Yadav S, Mehrotra GK, Bhartiya P, et al. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym. 2020;227:115348.
  • Yu J, Yang J, Liu B, et al. Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour Technol. 2009;100(11):2832–2841.
  • Hu Z, Zhang L, Zhong L, et al. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr Polym. 2019;219:290–297.
  • Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci. 2001;79(7):1324–1335.
  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol. 2001;71(2–3):235–244.
  • Wu YB, Yu SH, Mi FL, et al. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym. 2004;57(4):435–440.
  • Liu Y, He L, Mustapha A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009;107(4):1193–1201.
  • Xie Y, He Y, Irwin PL, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microb. 2011;77(7):2325–2331.
  • Kucerka N, Papp-Szabo E, Nieh MP, et al. Effect of cations on the structure of bilayers formed by lipopolysaccharides isolated from Pseudomonas aeruginosa PAO1. J Phys Chem B. 2008;112(27):8057–8062.
  • Pišlová M, Šubrt M, Polívková M, et al. Deposition of thin metal layers on chitosan films. Mater Technol. 2018;33(14):845–853.
  • Li X, Yu Z, Chen Q, et al. Chitosan-coated filter paper with superhydrophilicity for treatment of oily wastewater in acidic and alkaline environments. Mater Technol. 2019;34(4):213–223.
  • Humayun A, Luo Y, Elumalai A, et al. 3D printed antimicrobial PLA constructs functionalised with zinc-coated halloysite nanotubes-Ag-chitosan oligosaccharide lactate. Mater Technol. 2020;1–8. 10.1080/10667857.2020.1806188
  • Sokary R, Abu el-naga MN, Bekhit M, et al. A potential antibiofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ–irradiation. Mater Technol. 2021;1–10. 10.1080/10667857.2020.1863555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.