Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
273
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on mechanical properties of CoCrFeNiNx high entropy alloy films based on nanoindentation

, , &
Pages 1914-1925 | Received 19 Aug 2021, Accepted 08 Nov 2021, Published online: 17 Nov 2021

References

  • Cheng G, Choi KS, Hu X, et al. Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Mater Sci Eng A. 2016;652:384–395.
  • Zhou PF, Xiao DH, Li G, et al. Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations. J Mater Eng Perform. 2019;28:2620–2629.
  • Zhang LJ, Yu PF, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall Mater Trans A. 2016;47A:5871–5875.
  • Xu ZL, Zhang H, Li WH, et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high entropy alloy fabricated by selective laser melting. Addit Manuf. 2019;28:766–771.
  • Ma Y, Peng GJ, Wen DH, et al. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater Sci Eng A. 2015;621:111–117.
  • Li WB, Henshall JL, Hooper R, et al. The mechanisms of indentation creep. Acta Metall Mater. 1991;39:3099–3110.
  • Syed-Asif SA, Pethica JB. Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos Mag A. 1997;76:1105–1118.
  • Yoo BG, Kim KS, Oh JH, et al. Room temperature creep in amorphous alloys: influence of initial strain and free volume. Scripta Mater. 2010;63:1205–1208.
  • Cao QP, Sun LJ, Wang C, et al. Effect of loading rate on creep behavior and shear transformation zone in amorphous alloy thin films, and its correlation with deformation mode transition. Thin Solid Films. 2019;681:23–31.
  • Wang YQ, Zhang JY, Wu K, et al. Nanoindentation creep behavior of Cu–Zr metallic glass films. Mater Res Lett. 2017;6(1):22–28.
  • Chen R, Cai Z, Pu J, et al. Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique. J Alloys Compd. 2020;827:153836.
  • Chen LQ, Li W, Liu P, et al. Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum. 2020;181:109706.
  • Cui PP, Li W, Liu P, et al. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J Alloys Compd. 2020;834:155063.
  • Sha CH, Zhou ZF, Xie ZH, et al. FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl Surf Sci. 2020;507:145101.
  • Pogrebnjak AD, Yakushchenko IV, Bagdasaryan AA, et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions. Mater Chem Phys. 2014;147:1079–1091.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Ren B, Liu ZX, Li DM, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloy Compd. 2010;493(1–2):148–153.
  • Liu L, Zhu JB, Hou C, et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Mater Design. 2013;46:675–679.
  • Hsueh HT, Shen WJ, Tsai MH, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xNx. Surf Coat Tech. 2012;206(19–20):4106–4112.
  • Sheng W, Yang X, Zhu J, et al. Amorphous phase stability of NbTiAlSiNX high-entropy films. Rare Met. 2018;37(8):1–8.
  • Liang SC, Tsai DC, Chang ZC, et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl Surf Sci. 2011;258(1):399–403.
  • Huang CK, Li W, Liu P, et al. Study on microstructure and mechanical properties of AlxCoCrFeNi high entropy thin films prepared by magnetron sputtering. J Funct Mater. 2017;48(6):6144–6148.
  • Huang CK, Li W, Liu P, et al. Synthesis and mechanical properties of (AlCrTiZrNb)N high entropy alloy films grown by RF magnetron sputtering. Chin J Vac Sci Technol. 2018;38(6):487–496.
  • Chen TK, Wong MS, Shun TT, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Tech. 2005;200:1361–1365.
  • Li RB, Qiao BW, Jiang CX, et al. Influence of N2 content on diffusion barrier property of AlCrTaTiZrMoNx high-entropy alloy nitride film. Mater Prot. 2018;51(1):22–27.
  • Cheng KH, Lai CH, Lin SJ, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films. 2011;519:3185–3190.
  • Wall M, Cahill D, Petrov I, et al. Nucleation kinetics versus nitrogen partial pressure during homoepitaxial growth of stoichiometric TiN(001): a scanning tunneling microscopy study. Surf Sci. 2005;581:L122–L127.
  • Huo WY, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater. 2017;141:125–128.
  • Wang CL, Zhang M, Nieh TG. Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J Phys D Appl Phys. 2009;42:115405.
  • Wang F, Xu KW. Effect of loading rate on nanoindentation creep properties of Al films. Acta Metall Sin. 2004;40(11):1138–1142.
  • Zhang Z, Yu ZK, Cheng H, et al. Effect of Al content on microstructure and nanoindentation creep behaviors of AlxFeCoNiCu high-entropy alloys. Hot Working Tech. 2019;48(12):62–65.
  • Zheng HW, Shu XY, Li Y, et al. Nanoindentation mechanical properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 amorphous alloy. Mater Mech Eng. 2018;42(12):36–41.
  • Ma Y, Peng GJ, Feng YH, et al. Nanoindentation investigation on the creep mechanism in metallic glassy films. Mater Sci Eng A. 2016;651:548–555.
  • Chen YH, Huang JC, Wang L, et al. Effect of residual stresses on nanoindentation creep behavior of Zr-based bulk metallic glasses. Intermetallics. 2013;41:58–62.
  • Yoo BG, Oh JH, Kim YJ, et al. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu-Zr bulk metallic glass. Intermetallics. 2010;18:1898–1901.
  • Xu HY, Ke HB, Huang HG, et al. Nanoindentation creep behavior of U65Fe30Al5 amorphous alloy. Acta Metall Sin. 2017;53(7):817–823.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.